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Abstract
Objectives: To enhance the quality of Cardiac Signal for perfect diagnosis by the doctor. Methods/Statistical Analysis: We 
are introducing some adaptive filter structures for Cardiac Signal (CS) enhancement for the extraction of high resolution 
cardiac signals and these structures were based on the Proportionate Normalized Least Mean Square (PNLMS) algorithm. 
The main advantage of PNLMS over the conventional techniques is extraction of sparse coefficients, suitably weighing 
them and fast convergence. These ANCs are tested using MIT-BIH database to compare the performance. Findings: We 
consider Signal to Noise Ratio (SNR), Excess Mean Square Error (EMSE), Misadjustment (MSD), convergence curves and 
residual error plots as performance measures. Among the ANCs tested, PMNSRLMA based ANC is found to be better with 
reference to the considered performance measures and computational complexity. The average SNRI achieved by this ANC 
is 18.8856dBs for PLI elimination, 8.7580dBs for BW elimination, 8.5106dBs for MA elimination and 8.5012dBs for EM 
elimination. From the above results it is clear that in practical biotelemetry applications to minimize the computational 
complexity of the noise canceller we combine PNLMS with signature algorithms. Again, to reduce the complexity in the 
denominator of the normalized recursion, we use maximum normalized version of PNLMS. Finally, these variations result 
in seven algorithms in addition to PNLMS. Based on these algorithms, we develop various Adaptive Noise Cancellers 
(ANCs) to eliminate artifacts present in the CS and to present best quality signal to the doctor for diagnosis. Application/
Improvement: The standard of Cardiac Signal can be enhanced by improving data acquisition methods.

1. Introduction
Monitoring at regular intervals and on a continuous basis 
is vital for the cardiac patients. With the greatest increase 
in the number of people facing the problem of Cardio 
Vascular Diseases (CVDs), the need for a timely and easy 
diagnosis is increasing. It is stated in the World Health 
Organization’s (WHO) report on Non Communicable 
diseases that cardiac problems amount to 37% among 

the list1. However, many researchers (have worked to 
make a timely diagnosis and it is done in all forms right 
from the electrodes used in acquisition to identifying the 
arrhythmia2–10. One of the major advantages is that it is 
possible to track serious cardiac problems with the help 
of CS and Bardycardia. The Cardiac Signal obtained from 
an acquisition device basically represents heart’s activity 
and it is composed of segments like P, Q, R, S and T waves. 
These components are of equal importance compared 
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to the other in identifying the abnormalities in cardiac 
rhythm. However, they are commonly affected by the 
artifacts namely Power Line Interference (PLI), Base Line 
Wandering (BW), Muscle Artifact (MA), and Electrode 
Motion (EM) in the acquisition stage. The channel noise 
in addition to these artifacts will corrupt the CS during 
transmission in a tele cardiology system. The artifacts in 
general affect the morphology of the signal both in terms 
of amplitude and the shape too. But the deterioration 
of shape is not acceptable in the process of identifying 
abnormalities. So removing these artifacts is an impor-
tant task before the diagnosis is made on it. Several noise 
removal techniques exist which involve and non-adaptive 
forms of filtering11–21. However, the adaptive forms have a 
considerable advantage over non adaptive in terms of the 
adjustable taps driving the EMSE towards zero. 

In most of the ANCs for biomedical signal analy-
sis Least Mean Square (LMS) algorithm is commonly 
accepted algorithm due to its less computational complex-
ity and simplicity in implementation. However, the rate of 
convergence of LMS is slow when the eigenvalue spread is 
more, also the performance is a bit lower when the SNR 
is low. In order to overcome the stability issues various 
Normalized LMS (NLMS) algorithms are proposed22–24. 
The advantage of the normalized filters is that the step 
size is controlled here for better ESME performance and 
the algorithm does not depend on signal power. To cope 
up the issues associated with the conventional adaptive 
algorithm in CS enhancement, in the proposed paper we 
are introducing a new ANC. In the proposed ANC we 
use Proportionate Normalized LMS (PNLMS) to filter 
CS. The advantage lies in the extraction of sparse coef-
ficients and suitably weighing them. This made it as one 
of the best alternatives among the various NLMS algo-
rithms. Because it reduces the eigenvalue spread and 
thereby leads to fast convergence25. The PNLMS is similar 
to the NLMS proposed by26, in terms of normalization 
is performed. The only difference is in terms of the gain 
matrix. The gain matrix actually weighs the taps against 
their magnitude. Based on the analysis presented in 25,26 
it is clear that the PNLMS not only enjoys stability simi-
lar to NLMS but also it increases the convergence rate by 
weighing the inactive taps with less weight.

Nowadays, because of the rapid developments in 
biotelemetry, it is needed that the computer algorithms 
used in the signal enhancement activity must have less 
computational complexity. This constraint is not prop-

erly optimized during the design of the ANC, at the 
input of the Cardiac Signal Enhancer (CSE) the input 
data vector elements overlap with each other and causes 
aliasing. This causes inaccurate diagnosis. Therefore, 
the proposed algorithms to be employed in CSE must 
have less computational complexity. This is also facili-
tated in the development of Lab On Chip (LOC), System 
On Chip (SOC) and nano devices for wearable health 
care devices. Hence, to achieve the full advantage of 
the PNLMS, we combine PNLMS with sign algorithms. 
This is because the PNLMS only weighs the taps, but it 
does not nullify the taps. On the contrary the Signum 
based techniques will make the taps to either zero or 
one depending on the condition. So using the PNLMS 
in conjunction with Signum will improve the rate of 
convergence, making them a good mix. This reduces 
the number of coefficients participating in the actual 
iteration process decreasing the complexity. This result 
three more algorithms, Proportionate Normalized Sign 
Regressor LMS (PNSRLMS), Proportionate Normalized 
Sign LMS (PNSLMS) and Proportionate Normalized 
Sign Sign LMS (PNSSLMS) algorithms. Again, to reduce 
the computational complexity in the denominator of 
the normalization process, we normalize the step size 
with reference to a maximum value of data vector. This 
reduces Multiplication and Accumulation (MAC) opera-
tions to one from filter length. This results another four 
algorithms, Proportionate Maximum Normalized LMS 
(PMNLMS), Proportionate Maximum Normalized Sign 
Regressor LMS (PMNSRLMS), Proportionate Maximum 
Normalized Sign LMS (PMNSLMS) and Proportionate 
Maximum Normalized Sign Sign LMS (PMNSSLMS) 
algorithms. A similar approach is used by 27,28 to increase 
the convergence rate. The applying Signum function 
also helps to mitigate the problem of increase in filter 
taps which arise in case of high data rate transmission. 
Some efficient ANC structures for biomedical signal 
analysis are presented in 29–31. Finally, the proposed eight 
versions of proportionate algorithms are tested on real 
cardiac signals with different artifacts obtained from the 
MIT-BIH database. The performance of the developed 
ANCs is compared with conventional LMS based ANC. 
We have considered Signal to Noise Ratio (SNR), Excess 
Mean Square Error (EMSE), Misadjustment (MSD), con-
vergence curves and residual error plots as performance 
measures. 
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2. Cardiac Signal Enhancement 
using Proportionate Adaptive 
Noise Cancellers
Let R, d, S, µ be the terms representing the reference sig-
nal, desired signal, error signal, step size of an adaptive 
filter as shown in the Figure1 and let v be the noise adding 
from the channel. If we consider V=[V1 V2 V3….VM]T 
as the m length tap matrix and then the output of the filter 
would be VTR. Now the error signal generated by adding 
both the output of the filter and the desired signal upon 
minimization will result in tap update equation written as

			       (1)
It is necessary to consider here the work of Thakor in 26. 

Where the cardiac signal is filtered with LMS based ANC. 
The issues to be considered in selecting the reference were 
addressed in this work. It is possible to provide the ref-
erence as either signal or noise, but in our case we have 
chosen the noise as reference. It is considered to be corre-
lated with the actual noise which is corrupting the signal. 
In the sequential iterations the taps get adjusted so that 
the signal gets alleviated from the noise by minimizing it. 
LMS is simpler to implement and computationally easy, 
but it diverges when the signal is at low SNR. Divergence 
is also a serious issue as it decides the suitableness of the 
algorithm in the real time environment and it depends 
on signal power. Normalization helps to minimize the 
limitations in the LMS algorithm. Many normalization 
algorithms exist in the literature. The fundamental equa-
tion for normalization can be taken as 

The normalization is done with respect to the signal 
power and a small constant called leakage factor is used 
to avoid the stability problem if the signal power reaches 
null. Similarly, Proportionate Normalized LMS (PNLMS) 
is analyzed in32,33. The idea behind the proportionate type 
filters is to exploit the sparsity existing in the data by prop-
erly selecting the taps and weighing them on an individual 
basis. The weighing is done by means of a gain matrix G. 
It assigns the taps to the taps based on their current esti-
mated value. This significantly improves the convergence, 
but it will reduce when the taps are too small. Also, it 
helps to mitigate the problem of delay in communication, 
which is very critical in modern day health care applica-

tions where time of response is an important factor. The 
tap update equation of the PNLMS can be written as 

So from the above equation it is evident that the differ-
ence between the NLMS and PNLMS is observed in terms 
of the gain matrix in the numerator and the denominator. 

Based on sign algorithms, it is possible to apply the 
Signum either to the signal or the error itself called as 
Signum versions. The mathematical expression for the 
Signum function can be given as

The signum function decides the coefficients that 
are used in filtering by reducing them to zero based on 
predefined criteria. However, reduction in performance 
as a result of this nullification is minimal. The signum 
function in addition to the sparseness is contributing to 
a great improvement in a reasonable performance. This 
is significant from the performance measure calculated. 
As mentioned earlier, it is possible to apply the signum 
for the regressor, error and both and by applying this to 
the equation (3). The equations of sign algorithms based 
PNLMS are given as,

(4)

(5)

(6)

These are PNSRLMS, PNSLMS and PNSSLMS respec-
tively.

Again in the above discussed algorithms, the computa-
tional complexity equal to “m” MACs in the denominator 
is reduced to only one MAC by normalizing the step size 
with a maximum value of input data vector. This results 
PMNLMS, PMNSRLMS, PMNSLMS and PMNSSLMS 
algorithms. A generalized flow diagram of these algo-
rithms is shown in Figure 1.

Therefore, by applying maximum normalization, the 
weight update recursions are given by the following equa-
tions. Now equations (3)–(6) becomes, 
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Figure 1. A generalized flow diagram of PMNLMS algorithm.

(7)

(8)

(9)

(10)

These are PMNLMS, PMNSRLMS, PMNSLMS and 
PMNSSLMS respectively. 

The convergence curves of PNLMS and its signum 
based versions are shown in Figure 2. From this figure, 
it is clear that PNSRLMS is slightly inferior to PNLMS. 
This is due to the normalization involved in the signum 
function applied to the data vector in addition to normal-
ization performed over step size. The major advantage 
of PNSRLMS is, the multiplications in sign regressor 
operation are independent of filter length. Sign regressor 
operation needs only one multiplication. In this manner 
the performance of PNSRLMS is very close to PNLMS 
due to two normalizations performed and reduced num-
ber of multiplications by an amount “m”. Whereas, the 
performance of PNSLMS and PNSSLMS is better than 
the conventional LMS algorithm due to the normaliza-
tion operation, but inferior than PNLMS and PNSRLMS 
algorithms due to clipping the error quantity which is 
responsible for weight updation. Similarly, Figure 3 shows 
the convergence curves of PMNLMS and its sign varia-
tions. In these algorithms, as the step size normalization 
is performed with only one element in the performance of 
PMNLMS and its sign variants are little bit inferior than 
PNLMS and its sign variants. The remaining aspects of 
PNLMS are valid to PMNLMS and its variants. 
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Figure 2. Convergence curves of PNLMS and its sign 
variations.
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Figure 3. Convergence curves of PMNLMS and its sign 
variations.

3. Simulation Results
To evaluate the performance of proposed ANCs we have 
used the real cardiac signals obtained from the MIT-BIH 
arrhythmia database34. Records from data 101 - data105 
are used for this purpose and are 10mv in amplitude. 
These artifacts were obtained from 47 subjects who were 
in the age between 23 and 89. The step size is fixed at 0.1 
and the noise variance of 0.01 is taken. All the artifacts, 
i.e. Baseline Wander (BW), Muscle Artifact (MA) and 
Electrode Motion (EM) artifacts are taken from MIT 
database35 and the Power Line Interference (PLI) is gen-
erated synthetically. The artifact database was generated 
with the help of eighteen test subjects who were healthy 
and have not shown any cardiac abnormalities. In addi-
tion, a random noise with a variance of 0.001 is also 
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Table 1. Performance contrast of various algorithms in terms of SNRI for the removal of artifacts from cardiac 
signals (all values in dBs)

Noise
Type

Record
Number

LMS PNLMS PNSR
LMS

PNS
LMS

PNSS
LMS

PMN
LMS

PMNSR
LMS

PMNS
LMS

PMNSS
LMS

PLI 101 8.8067 21.9424 19.9272 12.6794 11.0263 18.9127 18.0693 10.8272 10.4053
102 7.7763 19.8596 18.5959 14.6808 11.2682 18.4364 17.5972 9.5894 9.1745
103 9.1878 22.1636 21.8145 20.2974 16.0675 21.6445 20.3978 12.6016 11.9881
104 8.5084 20.5594 19.5193 18.8803 13.6205 18.9968 17.8104 13.5205 12.7405
105 9.0063 22.0817 21.5112 17.3124 13.1450 21.6912 20.5534 12.6852 11.8273
Average 8.6571 21.3213 20.2736 16.7700 13.0255 19.9363 18.8856 11.8447 11.2271

BW 101 4.1985 10.7289 9.7820 7.8641 6.4349 9.7382 8.8720 6.4298 5.4769
102 4.2598 10.6345 9.7589 7.5936 6.5423 9.6931 8.8945 6.6351 5.3842
103 4.7682 10.1037 9.4683 7.4910 6.6345 9.7573 8.7839 6.1894 5.5473
104 4.8275 10.8794 9.7280 7.9838 6.2609 9.8621 8.8195 6.5692 5.7481
105 4.6124 10.8849 9.2474 7.1285 6.4581 9.5391 8.4205 6.4562 5.6475
Average 4.5332 10.6462 9.5969  7.6122 6.4661 9.7179 8.7580 6.4559 5.5068

MA 101 3.6415 10.2738 9.6948 7.8493 6.3587 9.7282 8.3482 6.3833 5.4893
102 3.7605 10.5382 9.7969 7.1783 6.2654 9.2374 8.3089 6.8573 5.9458
103 3.9652 10.5683 9.7647 7.3681 6.2573 9.8239 8.6499 6.8493 5.5891
104 4.0395 10.9273 9.4005 7.4916 6.5893 9.2374 8.8922 6.9453 5.6758
105 4.0008 10.3682 9.0338 7.3985 6.2359 9.9283 8.3538 6.9812 5.9231
Average 3.8815 10.5351 9.5381 7.4571 6.3413 9.5910 8.5106 6.8032 5.7246

EM 101 4.4419 10.9872 9.8200 7.8668 6.6165 9.2869 8.9416 6.3333 5.6090
102 4.6511 10.8975 9.2121 7.9552 6.0493 9.9843 8.2849 6.8379 5.8032
103 4.8438 10.1567 9.7172 7.6646 6.8205 9.4761 8.0243 6.0553 5.5755
104 4.6617 10.2148 9.5363 7.9293 6.3478 9.9875 8.6493 6.7010 5.9975
105 4.7782 10.5675 9.7255 7.9868 6.5365 9.9531 8.6063 6.7485 5.2828
Average 4.6753 10.5647 9.6022 7.8805 6.4741 9.7375 8.5012 6.5352 5.6536

Table 2. Performance contrast of various algorithms in terms of EMSE for the removal of artifacts from cardiac 
signals (all values in dBs)

Noise
Type

Record
Number

LMS PNLMS PNSR
LMS

PNS
LMS

PNSS
LMS

PMN
LMS

PMNSR- 
LMS

PMNS
LMS

PMNSS - 
LMS

PLI 101 -19.9894 -28.3485 -25.8937 -22.9485 -21.0426 -24.5849 -23.8085 -22.6174 -21.3809
102 -21.8298 -28.2394 -25.9384 -22.9573 -21.4403 -24.5900 -23.6457 -22.5399 -21.9632
103 -20.5036 -28.9439 -25.9838 -22.8465 -21.3312 -24.7732 -23.2020 -22.3219 -21.0330
104 -21.5394 -28.4940 -25.2883 -22.9126 -21.9606 -24.2273 -23.0210 -22.3475 -21.8814
105 -21.5227 -28.2394 -25.9414 -22.8692 -21.9323 -24.7644 -23.8872 -22.4669 -21.7324
Average -21.0769 -28.4530 -25.8091 -22.9068 -21.5414 -24.5879 -23.5128 -22.4587 -21.5981

BW 101 -11.1457 -15.2413 -14.4933 -12.8937 -11.4152 -13.5762 -12.6424 -12.0876 -11.2732
102 -11.4418 -15.2384 -14.2390 -12.9638 -11.9859 -13.4319 -12.8133 -12.4681 -11.9405
103 -11.4770 -15.5833 -14.4995 -12.9536 -11.5217 -13.4857 -12.6770 -12.1874 -11.5730
104 -8.9635 -15.3486 -14.3450 -12.7483 -11.0235 -13.3589 -12.4570 -12.0665 -11.5823
105 -12.6204 -15.8493 -14.2952 -12.8625 -11.3252 -13.3894 -12.7836 -12.6854 -12.6255
Average -11.1282 -15.4521 -14.3744 -12.8843 -11.454 -13.463 -12.675 -12.299 -11.799
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MA 101 -12.1110 -15.9035 -14.9834 -13.8597 -12.8371 -14.1028 -13.7597 -12.3046 -12.1944
102 -12.4097 -15.9295 -14.9735 -13.8929 -12.7836 -14.1616 -13.8460 -12.5778 -12.3898
103 -11.7569 -15.2830 -14.9184 -13.8419 -12.8472 -14.3329 -13.2722 -12.6010 -12.3823
104 -11.1118 -15.2395 -14.8934 -13.8346 -12.6495 -14.4652 -13.7898 -12.5110 -12.2307
105 -13.8287 -15.3450 -14.8674 -14.1462 -13.9798 -14.3728 -13.9585 -13.8730 -13.8459
Average -12.244 -15.5401 -14.9272 -13.9150 -13.0194 -14.2870 -13.7252 -12.7734 -12.6086

EM 101 -10.7955 -16.3290 -15.8548 -12.8107 -11.7429 -14.9675 -13.3399 -12.4484 -11.2794
102 -10.7225 -16.2397 -15.5767 -12.5551 -11.8736 -14.1557 -13.3940 -12.5321 -11.8689
103 -10.9025 -16.2390 -15.4745 -12.2360 -11.8239 -14.0457 -13.2951 -12.8610 -11.3711
104 -8.2407 -16.2095 -15.5763 -12.1075 -11.9125 -14.7166 -13.6287 -12.4345 -11.6213
105 -12.3952 -16.3905 -15.5128 -13.8622 -12.9831 -14.7103 -13.6962 -12.8369 -12.5703
Average -10.6112 -16.2815 -15.5990 -12.7143 -12.0672 -14.5191 -13.4707 -12.6225 -11.7422

Table 3. Performance contrast of various algorithms in terms of MSD for the removal of artifacts from cardiac 
signals (all values in dBs)

Noise
Type

Record
Number

LMS PN
LMS

PNSR
LMS

PNS
LMS

PNSS
LMS

PMN
LMS

PMNSR
LMS

PMNS
LMS

PMNSS
LMS

PLI 101 0.0761 0.0397 0.0425 0.0456 0.0493 0.0427 0.0435 0.0486 0.0539
102 0.0460 0.0221 0.0262 0.0287 0.0341 0.0289 0.0297 0.0327 0.0375
103 0.0744 0.0364 0.0387 0.0421 0.0463 0.0394 0.0397 0.0483 0.0526
104 0.0134 0.0075 0.0078 0.0082 0.0089 0.0077 0.0080 0.0097 0.0117
105 0.0725 0.0383 0.0395 0.0456 0.0483 0.0391 0.0418 0.0497 0.0526
Average 0.0564 0.0288 0.0309 0.0340 0.0373 0.0315 0.0325 0.0378 0.0416

BW 101 0.5829 0.3409 0.4388 0.4979 0.5198 0.3536 0.4703 0.5250 0.5487
102 0.5030 0.3527 0.4144 0.4694 0.4922 0.3929 0.4600 0.5013 0.5009
103 0.5960 0.3741 0.4766 0.4972 0.5761 0.3944 0.4961 0.5859 0.5963
104 0.4842 0.3185 0.4354 0.4579 0.4644 0.3623 0.4656 0.4758 0.4821
105 0.5630 0.3152 0.4427 0.4796 0.5392 0.3341 0.4887 0.5429 0.5574
Average 0.5458 0.3402 0.4415 0.4804 0.5183 0.3674 0.4761 0.5261 0.5370

MA 101 0.4667 0.2866 0.3250 0.3739 0.4148 0.2956 0.3558 0.4017 0.4507
102 0.4025 0.2881 0.3384 0.3448 0.3726 0.2995 0.3796 0.3665 0.3935
103 0.5579 0.3231 0.3663 0.3886 0.4258 0.3462 0.3822 0.4176 0.5460
104 0.8090 0.3633 0.3845 0.3953 0.6036 0.3837 0.4043 0.4270 0.6495
105 0.4262 0.2848 0.3782 0.3812 0.3869 0.2955 0.3951 0.4064 0.4188
Average 0.5324 0.3091 0.3584 0.3767 0.4407 0.3241 0.3834 0.4038 0.4197

EM 101 0.6319 0.3790 0.3915 0.4043 0.4481 0.3833 0.4030 0.4256 0.4974
102 0.5936 0.3268 0.3465 0.3751 0.4224 0.3326 0.3681 0.3833 0.4724
103 0.6792 0.3859 0.3909 0.4114 0.4720 0.3923 0.4166 0.4730 0.5484
104 0.5719 0.3003 0.3230 0.3332 0.4472 0.3212 0.3450 0.3523 0.5386
105 0.5929 0.3247 0.3328 0.3562 0.4536 0.3308 0.3549 0.3647 0.5665
Average 0.6139 0.3433 0.3569 0.3760 0.4486 0.35204 0.37752 0.3997 0.5246
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added. The impact of all the noise on the CS care shown 
in Figure 4. The performance measurements for all the 
four noises is calculated and tabulated as shown in the 
Tables 1–3. Figures 6–13 shows the performance of vari-
ous ANCs during the noise cancellation process. In these 
figures the x-axis represents the samples and the y-axis 
represents the magnitude. The simulation results of data 
101 are shown in this paper. However, the performance 
measures in terms of SNR, EMSE and MSD for all five 
records are tabulated in Tables 1–3.
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Figure 4. Cardiac signal with various artifacts. a)BW b)MA 
c)EM d) PLI.

3.1 Power Line Interference (PLI) 
Cancellation
The PLI noise generated from the generator is given as 
primary input and noisy CS as the desired signal to the 
filter structure shown in Figure 5. The noise affected CS 
is shown in Figure 4. It is 1mV in amplitude with 60Hz 
frequency and is sampled at 200Hz. The results of PLI fil-
tering for the filters are presented in Figure 6 and Figure 
7. In Figure 6 shows the cardiac signal after filtering with 
various ANCs. Figure 6 shows CS contaminated with 
PLI, 6(b) shows filtering results after LMS based ANC. 
Figure 6 shows filtered signal after PNLMS filtering, 6(d) 
shows CS after PNSRLMS filtering, 6(e) shows CS after 
PNSLMS filtering, 6(f) shows CS after PNSSLMS filter-
ing. Figure 6 shows CS after PMNLMS filtering, 6(h) 
shows CS after PMNSRLMS filtering, 6(i) shows CS after 
PMNSLMS filtering and 6(j) shows CS after PMNSSLMS 
filtering. Figure7 shows the residual noise after filtering 
with various ANCs. The description of various subplots 

in Figure 7 are as, original PLI, 7(b) residual noise after 
LMS filtering, 7(c) after PNLMS, 7(d) after PNSRLMS, 
7(e) after PNSLMS, 7(f) after PNSSLMS. Similarly, 7(g) 
shows residual noise after PMNLMS filtering, 7(h) after 
PMNSRLMS, 7(i) after PMNSLMS, 7(j) residual noise 
after PMNSSLMS filtering.

The signal morphology was recovered relatively 
greatly over its counterparts by PNSRLMS as shown in 
the Figure 7. The performance measurements in terms 
of SNRI, EMSE and MSD for PLI cancellation are shown 
in Tables 1–3. For these calculations, the PLI cancella-
tion experiments are performed for ten times on each 
data and the average values are tabulated. The simula-
tion results corresponding to data 101 are shown in 
this section. Among the algorithms considered PNLMS 
achieves highest SNR of 21.9424 dB, but PNSRLMS gets 
19.9272 dB with “m” number of reduced MACs. In maxi-
mum normalized category PMNLMS gets 18.9127 dB 
with “m” number of reduced MACs in the denominator 
and PMSRLMS achieves 18.0693 dB with “m” num-
ber of reduced MACs in the denominator as well as in 
numerator due to sign regressor operation. Where, as 
conventional LMS achieves SNR of 8.8067 dB only during 
artifact removal process. A similar order of performance 
is achieved with reference to EMSE and MSD. 

Figure 5. Cardiac signal enhancer.
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Figure 6. PLI Filtering results using various ANCs.
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Figure 7. Residual noise after PLI filtering using various 
ANCs.

3.2 Base Line Wander (BW) Cancellation
Here the BW noise taken from the MIT-BIH database 
is given as the reference signal and the BW corrupted 
arrhythmia data was given as the desired signal is shown 
in the Figure 4 The filtering performance of the various 
ANCs is presented in Figure 8 and Figure 9. Figure 8 shows 
CS contaminated with BW, 8(b) shows filtering results 
after LMS based ANC. Figure 8 shows filtered signal after 
PNLMS processing, 8(d) shows CS after PNSRLMS fil-
tering, 8(e) shows CS after PNSLMS filtering, 8(f) shows 
CS after PNSSLMS filtering. Figure 8 shows CS after 
PMNLMS, 8(h) shows CS after PMNSRLMS filtering, 
8(i) shows CS after PMNSLMS filtering and 8(j) shows 
CS after PMNSSLMS filtering. Figure 9 shows the residual 
noise after filtering with various ANCs. The description of 
various subplots in Figure 9 are as, 9(a) original BW, 9(b) 
residual noise after LMS filtering, 9(c) after PNLMS, 9(d) 
after PNSRLMS, 9(e) after PNSLMS, 9(f) after PNSSLMS. 
Similarly, 9(g) shows residual noise after PMNLMS filter-
ing, 9(h) after PMNSRLMS, 9(i) after PMNSLMS, 9(j) 
residual noise after PMNSSLMS filtering. 

The simulation results corresponding to data 101 are 
shown in this section. Among the algorithms consid-
ered PNLMS achieves highest SNR of 10.7289 dB, but 
PNSRLMS gets 9.7820 dB with “m” number of reduced 
MACs. In maximum normalized category PMNLMS 
gets 9.7382 dB with “m” number of reduced MACs in the 
denominator and PMSRLMS achieves 8.8720 dB with 
“m” number of reduced MACs in the denominator as well 
as in numerator due to sign regressor operation. Whereas, 
conventional LMS achieves SNR of 4.1985 db only during 

artifact removal process. A similar order of performance 
is achieved with reference to EMSE and MSD. 
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Figure 8. BW filtering results using various ANCs.
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Figure 9. Residual noise after BW filtering using various 
ANCs.

3.3 Muscle Artifact (MA) Cancellation
Here the MA artifact taken from the MIT-BIH database 
is given as reference and the signal corrupted with the 
MA artifact is given as the desired signal. CS affected with 
MA artifact is shown in Figure. The filtering results and 
residual noise components after various ANCs are shown 
in Figure 10 and Figure 11. Figure 10 shows CS contami-
nated with MA, 10(b) shows filtering results after LMS 
based ANC. Figure 10shows filtered signal after PNLMS 
processing, 10(d) shows CS after PNSRLMS filtering, 10(e) 
shows CS after PNSLMS filtering, 10(f) shows CS after 
PNSSLMS filtering. Figure 5 shows CS after PMNLMS fil-
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tering, 10(h) shows CS after PMNSRLMS filtering, 10(i) 
shows CS after PMNSLMS filtering and 10(j) shows CS 
after PMNSSLMS filtering. Figure 11 shows the residual 
noise after filtering with various ANCs. The description 
of various subplots in Figure 11 are as, original MA, 11(b) 
residual noise after LMS filtering, 11(c) after PNLMS, 
11(d) after PNSRLMS filtering, 11(e) after PNSLMS fil-
tering, 11(f) after PNSSLMS filtering. Similarly, 11(g) 
shows residual noise after PMNLMS filtering, 11(h) after 
PMNSRLMS filtering, 11(i) after PMNSLMS filtering, 
11(j) residual noise after PMNSSLMS filtering. 

The simulation results corresponding to data 101 are 
shown in this section. Among the algorithms consid-
ered PNLMS achieves highest SNR of 10.2738 dB, but 
PNSRLMS gets 9.6948 dB with “m” number of reduced 
MACs. In maximum normalized category PMNLMS 
gets 9.7282 dB with “m” number of reduced MACs in the 
denominator and PMSRLMS achieves 8.3482 dB with “m” 
number of reduced MACs in the denominator as well as 
in numerator due to sign regressor operation. Where, as 
conventional LMS achieves SNR of 3.6415 dB only during 
artifact removal process. A similar order of performance 
is achieved with reference to EMSE and MSD.
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Figure 10. MA filtering results using various ANCs.

3.4 Electrode Motion (EM) Artifact
Like other noises the artifact is taken as reference and the 
corrupted signal is taken as the desired signal. The CS 
signal corrupted with EM artifact can be seen in Figure 
4 The results of the filtering are shown in Figure 12 and 
Figure 13. Figure 12 shows CS contaminated with EM, 
12(b) shows filtering results after LMS based ANC. Figure 
12 shows filtered signal after PNLMS processing, 12(d) 
shows CS after PNSRLMS, 12(e) shows CS after PNSLMS, 

12(f) shows CS after PNSSLMS filtering. Figure 5 shows 
CS after PMNLMS, 12(h) shows CS after PMNSRLMS, 
12(i) shows CS after PMNSLMS and 12(j) shows CS after 
PMNSSLMS filtering. Figure 13 shows the residual noise 
after filtering with various ANCs. The description of vari-
ous subplots in Figure 13 are as, 13(a) original EM, 13(b) 
residual noise after LMS filtering, 13(c) after PNLMS, 
13(d) after PNSRLMS, 13(e) after PNSLMS, 13(f) after 
PNSSLMS. Similarly, 13(g) shows residual noise after 
PMNLMS filtering, 13(h) after PMNSRLMS, 13(i) after 
PMNSLMS, 13(j) residual noise after PMNSSLMS filter-
ing. 
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Figure 11. Residual noise after MA filtering using various 
ANCs.
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Figure 12. EM filtering results using various ANCs.

The simulation results corresponding to data 101 are 
shown in this section. Among the algorithms consid-
ered PNLMS achieves highest SNR of 10.9872 dB, but 
PNSRLMS gets 9.8200 dB with “m” number of reduced 
MACs. In maximum normalized category PMNLMS 
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gets 9.2869 dB with “m” number of reduced MACs in the 
denominator and PMSRLMS achieves 8.9416 dB with 
“m” number of reduced MACs in the denominator as well 
as in numerator due to sign regressor operation. Whereas, 
conventional LMS achieves SNR of 4.4419 dB only during 
artifact removal process. A similar order of performance 
is achieved with reference to EMSE and MSD.
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Figure 13. Residual noise after EM filtering using various 
ANCs.

4. Conclusion
In the proposed work, the removal of artifacts from car-
diac signals is presented with the help of the proportionate 
type adaptive algorithms. The maximum normalization 
and sign based versions of PNLMS are implemented to 
improve the suitability of the algorithm to use in real time. 
MIT-BIH arrhythmia database is used to test the perfor-
mance of the proposed noise cancellers. SNR, EMSE and 
MSD are considered as measures to evaluate the perfor-
mance of the proposed implementations. Among various 
algorithms, PNLMS is found to be first in the list with ref-
erence to various performance measures. The PNSRLMS 
is found to be second in the list. PNSRLMS is little bit 
inferior to PNLMS with respect to SNR, EMSE, MSD 
and convergence, but reduces “m” MACs due to the sign 
regressor operation. Next, the PMNLMS is found to be 
third in the list with reference to SNR, EMSE, MSD and 
convergence, but it reduces “m” MACs in the denomina-
tor because of normalization with respect to maximum of 
data vector. Finally, PMNSRLMS is found to be fourth in 
the list with reference to SNR, EMSE, MSD and conver-
gence. But it reduces “m” MACs in the denominator due 

to maximum normalization and other “m” MACs due to 
sign regressor operation. However, in practical health care 
monitoring devices PMNSRLMS is well suited because of 
its reduced number of MACs even though it is slightly 
inferior than PNLMS. 
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