
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(44), DOI: 10.17485/ijst/2016/v9i44/95055, November 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Significant Subgraph Mining with Representative Set
D. Kavitha1*, V. Kamakshi Prasad2 and J. V. R. Murthy3

1PVPSIT, Vijayawada - 520007, Andhra Pradesh, India; kavitha_donepudi@yahoo.com
2Department of Computer Science and Engineering, JNTUH College of Engineering, JNTU Hyderabad - 500085,

Telangana, India; kamakshiprasad@jntuh.ac.in
3Department of Computer Science and Engineering, JNTU Kakinada, Kakinada – 533003, Andhra Pradesh, India;

mjonnalagedda@gmail.com

Keywords: Frequent Graphs, Objective Function, Representative Set, Statistical Significance, Subgraph Mining

Abstract
Objectives: To mine significant subgraphs with user specified objective functions from a set of graphs that are useful
for understanding the intrinsic characteristics of data in a scalable approach. Methods/Statistical Analysis: A large
number of candidate subgraphs generated during mining process causes both computational and statistical problem. In
this paper, Significant SubGraph Mining-SSGM proposes an algorithm to find significant subgraphs by using a small set of
representative patterns - coreset that overcomes these problems. Furthermore, an edge graph notation is used to represent
a graph that enables to mine patterns directly without using separate mining algorithm. Findings: The number of possible
candidates is generally exponential in search space and techniques employed are mostly focussed on monotonic property.
The proposed algorithm offers simple, yet efficient optimizations to significantly improve performance by pruning the
search space and exploring representative graphs. It avoids enumeration of all frequent subgraphs which cause redundancy
and extreme mining time. The identified coreset elements are extended that provide optimal solution patterns and adopted
edge graph notation mine subgraphs directly. Application/Improvements: Experimental results shows that the proposed
algorithm is effective and efficient for mining significant subgraphs in terms of computational cost, scalability and time
over existing methods. The algorithm can be applied to find different types of significant patterns in a scalable manner
by using any objective function according to the problem domain including support, correlation measure and feature set.

1. Introduction
Mining graph data, the extraction of useful knowledge
in the form of graphs has more significance as graph is a
powerful way to represent structured and complex data1.
Attributed graphs2,3 can be used to address various prob-
lems such as graphical symbol recognition, shape analysis,
protein structure analysis, computer network monitoring,
web data analysis, social networks, XML data4–12 and so
on. A useful task to perform on this type of applications is
frequent subgraph mining.

Frequent subgraph mining problem can be defined as
finding a set of frequent subgraphs from a set of graphs in
a graph database or from a large single graph. A subgraph
is said to be frequent if it exists in at least T graphs in a

data set D, where T is a user defined frequency support.
Frequent subgraphs are useful to accomplish basic mining
tasks such as description that provides concise and suc-
cinct summarization and discrimination, classification,
clustering and building indices on graph data. Mining
frequent subgraphs has been extensively studied and
various efficient graph based algorithms such as AGM,
FSG, FFSM, gSpan, Gaston, SPIN13–19 etc. are developed.
A common feature of all these algorithms is that they
completely enumerate all the frequent subgraphs. The
large number of extracted frequent subgraphs may not be
useful to get good classification accuracy or to determine
essential characteristics such as disease identification and
drug discovery applications. Rather, a small set of sig-
nificant subgraph patterns are useful to learn important

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 2

Significant Subgraph Mining with Representative Set

characteristics and structures hidden in data sets more
easily. Finding such significant patterns that appear at low
frequency threshold from the database is computational
and statistical problem.

1.1 Threshold Bottleneck
Generally in mining process, at first, all frequent subgraphs
are mined and are used to select significant patterns based
on user defined objective function. Clearly, this two-step
traditional process is not scalable to find significant sub-
graphs due to the reason - low frequency threshold has
to be set for many objective functions which generates
an exponential search space and slow mining process.
Hence, mining frequent patterns with low threshold
becomes the bottleneck of the mining process in Figure 1.
At high value threshold, a user has to sacrifice the quality
and quantity of discovered significant patterns. Generally
most significant and discriminate patterns are less in
number when compared to frequent patterns; hence, high
threshold value suppresses mining of all significant pat-
terns.

Here are some existing algorithms that mine sig-
nificant patterns and find use in applications. An
application of boosting for classifying labelled graphs20,
general structures for modeling chemical compounds,
natural language texts and bio-sequences was presented.
A feature vector21 representation used to find significant
patterns. Unfortunately, all (closed) frequent subgraphs
needs to mine first in this practice. The proposed leap
search22 to find patterns, focussed on the databases that
can be divided into positive and negative sets. Frequent
structures as features23,24 was used to classify chemi-

cal compounds. Frequent graph patterns were also used
as indexing features by25 to perform fast graph search.
Pattern-based classification models were demonstrated26
and in these methods, only distinguishable significant
patterns are used, while mining all frequent subgraphs
could result in poor performance and low accuracy
such as over fitted or under fitted classifiers.27 discussed
mining representative orthogonal graph patterns using
α-orthogonal β-representative set to find optimal solu-
tion. 21 existing measures to evaluate the significance28
of the patterns were surveyed. Branch-and-bound search
technique was adopted by many of the existing applica-
tions with a derived bound for a specific function. Branch
and bound search technique may bring poor results as it
could fall into local maxima due to very large search space
in graph data sets.

In this paper, we propose an algorithm that addresses
mining frequent graph patterns which exploit the sig-
nificant patterns. The proposed algorithm is able to find
significant subgraphs in a limited period of time, 1. By
using a small set of approximate patterns and 2, By prun-
ing search space. First, a small set of subgraphs referred
as coresets that play a key role in the extraction of signifi-
cant graphs are identified. These coresets are enough to
mine significant frequent patterns which are effectively
useful in applications such as graph indexing, classifica-
tion and clustering29. Then, edge subgraphs are created as
the representatives of actual graphs. They can be used to
mine frequent patterns directly with specified graph size,
reducing the cost of candidate generation and incremen-
tal growth. Pruning search space is an effective technique
to complete the process in time. Size based, support based
and structural pruning are three important methods
in pruning search space. Pruning search space is itself
employed in the proposed process of mining. Adopted
coresets concept avails the structure based and support
based pruning technique. Edge subgraphs have been used
to mine frequent patterns directly at specified sizes, thus,
size based pruning is implemented.
In summary, our contributions are:

•	 A novel frame work to mine significant frequent
subgraphs in a data set is proposed. It is based
on an idea to avoid enumeration of all frequent
subgraphs which cause redundancy and extreme
mining time.

•	 It offers a heuristic search with novel optimiza-
tions to significantly improve performance by

Indian Journal of Science and Technology 3Vol 9 (44) | November 2016 | www.indjst.org

D. Kavitha, V. Kamakshi Prasad and J. V. R. Murthy

pruning the search space by adopting coresets
and exploring approximate graphs.

•	 To enumerate the possible subgraphs of any
size, edge graph notation is adopted to mine
subgraphs directly at specified size and it avoids
exploration of all frequent subgraphs at small
sizes.

•	 A variation of FSG is proposed to mine all fre-
quent subgraphs than in traditional manner.

2. Preliminary Concepts
Graph: A labelled graph is a quadruple G = (V, E, L, l)
where V is a finite set of vertices, E is a set of edges and E

V x V , L is a set of labels and l(V → L) is a function
that assigns a unique label to each vertex of graph G.

Subgraph: A graph G’ = (V’, E’) is a subgraph of
another graph G = (V, E) iff V’⊆ V, and E’⊆ E ∧ ((v1, v2)∈
E’ → v1, v2∈ V’).

Subgraph Isomorphism: For two labelled graphs G
and H, a subgraph isomorphism is a bijection f: V(G) →

V(H) such that v V(G), L(v) = L’(f (v)) and (

,v) E(G)⇔ (f(), f(v)) E(H) and L(, v) = L’(f (
), f (v)) where L and L’ are labels of G and H respectively.
This mapping preserves labels on the vertices and edges.

Frequency: Given a graph dataset D = {G1, G2,..Gn} and

a subgraph g, the frequency f of g, is .
Frequent Subgraph: Given a graph dataset D = {G1,…

Gn}, a subgraph g and a frequency threshold T, a subgraph

g with frequency is said to be frequent if and
only if f >T w.r.t |D|

Significant Subgraph: Given a graph data set D =
{G1,G2,…Gn} and an objective function F, a general prob-
lem definition for mining significant graph patterns can
be formulated in two different ways: 1. Find all subgraphs
g such that F(g) ≥ T where T is a significance threshold; or
2. Find a subgraph g* such that g* = argmaxgF(g).

Coreset: A coreset30 is a small subset CS with respect to
the given graph dataset D that approximates the original
set D, that is finding the coreset CS for the given objective
function F provides an approximate solution for the prob-
lem on the dataset D.

Similar Graphs: Similarity between two graphs is a
symmetric binary function F × F → [0, 1]. The similarity

based on the maximum common subgraph31 is given as:
sim(Gi,Gj) = |Gc|/max(|Gi|,| Gj|) , where Gc is the maxi-
mum common subgraph of Gi and Gj.

3. Mining Significant Graph
Patterns

3.1 Overview of Significant Graph Pattern
Mining
As mentioned earlier, interesting patterns are not simply
those that occur frequently, instead they are the patterns
that contain some statistical significance based on the
defined objective function. Figure 2 shows a sample dataset
of amino acids. An amino acid consists of a central carbon
atom attached to a carboxyl group (-COOH), an amino
group (-NH2), a hydrogen atom and a side group (-R), giv-
ing the general formula R-CH-NH2-COOH. Amino acids
differ with each other based on the atoms composed in
the side group. The characteristics and distinguishing of
amino acids are determined by side group and they may
vary in size, charge, added atom type etc. The carbon atom
of each amino acid is attached with four different groups
and thus is asymmetric. Asparagine and glutamine are
uncharged but have polar amide groups with extensive
hydrogen-bonding capacities. Arginine and lysine amino
acids are positively charged. Based on the traditional fre-
quent subgraph mining technique, the largest frequent
subgraphs that can be extracted with support frequency
of 50% is shown in Figure 2. It can be observed that
these frequent subgraphs have less significant informa-
tion that might be useful for characterizing the amino
acids. Instead, mining subgraphs associated with subset
of atoms which have significance in other words which
satisfies objective function is required.

In order to mine significant patterns, the proposed
algorithm using a small set of approximate subgraphs
(coreset) according to their support and significance

https://xlinux.nist.gov/dads/HTML/graph.html
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7731/

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 4

Significant Subgraph Mining with Representative Set

from the data set. The elements of coreset are used as
basic candidates to find optimal patterns. Here, optimiza-
tion problem is solved directly. We consider any rational
objective function such as frequency support, statistical
significance, discriminative ratio, structural correlation
and correlation measure as a general definition to mine
significant patterns. The user can give his perceptions to
define the significance. Objective of the proposed con-
cept is to design a general mining framework that can be
applicable to a variety of applications. Next we describe
the proposed technique to capture the set of approximate
subgraphs that generates significant patterns.

3.2 Introduction to Coreset
Finding approximate solutions is one of the classical tech-
niques to solve hard problems. “Small” amount of “most
significant” information is extracted from the given data
and perform the computation on this extracted data to get
the solution of the original problem. A coreset cs of a set
S with respect to problem domain is a small subset that
represents the original set S and approximates the solu-
tion result set, that is, identification of the representative
set known as coreset provides an accurate solution for the
original set S. Corsets were introduced in computational
geometry as a small subset of points used to find approxi-
mate solutions. In the problem, coreset of a data set D are
a set of small subgraphs that are embedded and approxi-
mates the resultant frequent subgraphs, in the sense that
coreset provides an approximate solution. The advantage
of introducing the concept of coreset is that an optimal
solution can be computed and fasten the computation
of discovering significant frequent substructures for the
given data set by applying any fast approximation algo-
rithm.

For the given graph data set D, coreset is the set of fre-
quent subgraphs that can guarantee the generation of all
significant frequent subgraphs with minimum support T.
Minimum support excludes generation of infrequent sub-
graphs. Anti-monotone property effectively prunes search
space. Based on anti-monotone property any supergraph
g’ of an infrequent graph g is also infrequent. Coreset can
be defined as the characteristic representatives of original
graph.

Selection of coreset elements is application dependent
and may require domain knowledge. To select appropriate
substructures as coreset the points to be considered are: 1.
The significant patterns are to be statistically frequent, 2.
Coreset elements are such that these preserve structural

information of data set and approximations of result sets
and 3. Elements of coreset are with minimal overlapping
structure.

For the application of amino acids Figure 2, frequent
subgraphs of k-size are shown in Figure 3. The subgraphs
3(a), 3(b), 3(c) and 3(d) are with the frequency sup-
port 100%, 3(e) is with 75% and 3(f) and 3(g) are with
50% frequency support. In general these frequent sub-
graphs are used to generate supergraphs and to identify
frequent as these subgraphs are frequent. From these
subgraphs the coreset elements are identified that have
statistical significance and representativeness. Along with
these another important factor to find optimized coreset
substructures is structure of the elements. If the search
structure is examined horizontally, it can be observed
that the subgraphs along the neighbour branches likely
to have similar composition and frequencies which dif-
fer only in their deterministic features in Figure 3. The
structural composition of (a), (b), (c) and (d) varies only
by one edge and the frequency support is almost identical.
Accordingly, in search space, neighbour branches show
strong similarity in pattern composition. The neighbour
subgraphs which have structural overlapping can be dis-
carded as the elements of the coreset to reduce redundant
supergraphs generation. Coreset elements are identified in
such a way that they represent effective patterns to extend
significant patterns, there by pruning the search space
using the structural and support pruning methods.

3.3 Preposition
Let C1,..,Cn be the elements of coreset of data set D and
F1,…Fn be the frequent subgraphs of data set D, then fre-
quent subgraphs of C1…Cn be the exactly same as F1,…Fn
frequent graphs in data set D.

4. SSGM→ Significant Subgraph
Mining Framework
This section starts with the presentation of Significant
Subgraph Mining algorithm to mine significant sub-

Indian Journal of Science and Technology 5Vol 9 (44) | November 2016 | www.indjst.org

D. Kavitha, V. Kamakshi Prasad and J. V. R. Murthy

graphs. Then findcoreset() algorithm which identifies
optimal subgraphs as elements of coreset is explained.
Then notation of edge graphs is introduced that is used to
represent actual graphs in edge format. Enumeration of
significant subgraphs using SubgraphExtnsn() algorithm
is discussed in detail as perfect extension of a subgraph
reduces redundant supergraph generation by not losing
significant patterns.
Algorithm: Significant Subgraph Mining (SSGM)

Input: A graph dataset D
Output: Significant patterns

Begin
 1. F1← All frequent 1- edge subgraph in D in Canonical

edge form.
 2. CK← findcoreset (F1).
 3. for each G belongs to D do.
 4. S ←SubgraphExtnsn(n,F1,CK).
 5. result ← 0.
 6. while S≠ do.
 7. for each s in S do.
 8. if s is not already in result then.
 9. result ← result s
End

Step 1: Initially, all frequent 1-edge graphs of the
data set D are enumerated. A 1-edge graph is said to
be frequent if its frequency support is greater than the
threshold defined for data set D. i.e. its occurrence should
be at least in T number of graphs in data set D. Based on
anti-monotone property, only these edges participate in
frequent subgraphs. (step 1). Then algorithm findcoreset
(F1) is executed to identify the elements of coreset that
are further used to find significant graphs. findcoreset(F1)
algorithm will be elaborated later in the next portions of
the work. Discovered coreset is used as input to generate
significant graphs by using SubgraphExtnsn() algorithm
(step 4). Significant subgraphs are generated by iteratively
executing SubgraphExtnsn() algorithm for each graph G,
in the data set D. At this stage significant graphs are gen-
erated for the given coreset and the last step prunes out
redundant patterns if any appeared.

4.1 Finding Representative Set
The proposal is to mine significant elements and use them
to identify significant subgraph patterns in the data set.
In main algorithm the frequent edges generated at step 1
are the input to this algorithm. All frequent k-edge sub-
graphs are generated at first and then elements of coreset

are identified which possess the properties explained in
the introduction of coreset. Along with those the coreset
elements in the proposed algorithm capture structural
information of the patterns so that the graph occurrence
is certain in the outcome. The elements of coreset are
further used to construct result sets. The process of iden-
tifying coreset is defined in the below algorithm.
Algorithm: findcoreset()

Input: F1← All frequent 1- edge subgraph in D in
Canonical edge form.

Output: Coreset CS.
S1← All frequent 1- edge subgraph in D in Canonical

edge form.
S, Sj←a data structure to store intermediate graphs.

Begin
 1. Sj← S1
 2. while j<k , for each s from Sj do.
 3. while S1≠ do.
 4. let e’ be last edge of s and for each edge e in S1.
 5. if e can be used to extend e’ then.
 6. ext ← s <> e.
 7. if ext is not already generated then.
 8. Sj ← Sj ext.
 9. S← Sj All subgraphs with k-edge in edge-format .
 10. for each s in S do.
 11. find fcnt of s in S.
 19. find t and T // set threshold T and t – min and

max threshold based on ranges appeared and user
given significance.

 20. for each s in S do.
 21. if s.fcnt≥ t or s.fcnt ≤T then.
 22. CSk ← CSk s .
 23. for each s in CSk
 24. if sim(s1, s2) ≤ x then.
 25. CS ← CS s
End

This algorithm takes frequent 1-edge graphs as input
and tries to extend the size of subgraph by adding an edge
at a time. During iteration, it generates edge subgraphs
and the size of each subgraph is greater than the previ-
ously generated subgraph by one edge. In such a way it
generates k-edge subgraphs (steps 1-8). The frequency
of each of these k-edge subgraphs is identified. Based on
the actual frequency in the graph data set and the user
defined significance, upper and lower frequency sup-

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 6

Significant Subgraph Mining with Representative Set

port thresholds are set and all frequent k-edge subgraphs
of the data set S are identified (steps 9-22). As we know
subgraphs with higher frequencies may not necessar-
ily reflect their respective significance, upper and lower
frequency thresholds are identified using normalization
technique. Now we have to discard the maximal overlap-
ping elements of the set to reduce redundant supergraphs
generation as overlapping elements are relatively not inde-
pendent. To discard similar graphs graph distance metric
(23) along with frequency support is used. According to
the statistical frequency and relativeness kth elements are
chosen and identified as elements of corset (step 24-25).
A corset is a set of k-edge subgraphs that are statistically
frequent and participate in resultant significant frequent
graphs. Identification of coreset prunes subgraphs that
may generate redundant graphs and that do not satisfy
the support constraint as well as which may not become
the significant parts in resultant graphs.

4.2 Edge Graphs
Generally significant graph mining algorithms are used
along with frequent graph mining algorithms to retrieve
frequent significant graphs. We proposed a technique to
mine graph patterns.

A graph is an ordered pair G = (V, E) made up of set
of vertices V and the set of edges E. The graph is labelled,
that is, each vertex and edge has an associated label from
the given set of vertex labels L (V) and edge labels L (E).
Each vertex (or edge) of the graph may not have a unique
label. In other words, many vertices (or edges) of the
graph may have same label. Along with the actual labels
of vertices in the graph, vertices are labelled by using con-
secutive integers {1,…,n} where n is number of vertices in
the graph. Figure 4 shows an example graph. Actual ver-
tices of the graph G are{x,y,x,z,x}. An edge is shown with
pair of vertices it connected and the label of that edge
(u,v,l). The edges of the above graph are (x,x,a), (x,y,a),
(x,y,b),(x,z,c),(x,z,d). It is observed that the label of the
edge may be different even if the labels of comprised ver-
tices are same. Vertices are labelled by using integers to
identify each and every vertex uniquely and thus to iden-
tify edges. Now the edges of graph G are represented in
the form of (1-3), (1-2), (1-4), (3-4), (2-5).

Let G be a graph with a single label per vertex, S
(VS,ES,LS) be a subgraph of G and all of its vertex labels are
unique, i.e., LS(v) ≠LS(v′)for all v and v′ in VS such that v
≠ v′. To calculate subgraph S directly, the S to G Coreset

has to be considered besides the domains of variables by
enforcing vertex and edge consistency. Since all vertices
of graph have unique labels and the query has unique
labels, we can easily identify every vertex that participates
in subgraphs and no vertex can appear more than once.

In actual graph, it is difficult to identify each vertex
and edge uniquely as three vertices contain the same
label x. That’s why, extension of subgraphs and finding
embedded edges and vertices are also difficult. The com-
plexity involved in the above tasks can be reduced by
using unique labels which are introduced in edge graph
notation. According to edge-graph notation used to rep-
resent the graph G, vertices are represented as (1,x), (2,y),
(3,x), (4,z), (5,x) and edges are (1,2,a), (2,5,b), (1,3,a),
(3,4,c), (1,4,d). In computation, edge (1-2) represents an
actual edge (1,2,a) that in turn (x,x,a). The size of a graph
G = (V, E) is defined to be equal to number of edges in a
graph |E|. Adding an edge e = (u, v) to a size-k connected
graph results connected (k + 1) sized graph.

1-edge subgraphs of graph G are represented as {(1-3),
(1-2), (1-4), (3-4), (2-5)} shown in Figure 5. Here the edge
set of graph is represented and from this, only the possible
subgraph extensions can be generated with reference to
the actual graph, contrary to the general perception. As a
consequence, expensive generation of all combinational
subgraphs that don’t appear in actual graph are not neces-
sary. Thus set of 2-edge subgraphs generated from 1-edge
subgraphs of graph G are {(1-3,1-2), (1-3,1-4), (1-3,3-4),
(1-2,1-4), (1-2,2-5), (1-4,3-4)} and 5-edge subgraph is
{(1-3, 1-2, 1-4, 3-4 , 2-5)} and is same of original graph.
If we observe that subgraphs at same edge level share the
core subgraph and k+1-edge subgraphs differ from k-edge
subgraphs by one edge only. These edge subgraphs are
representatives of original graph and identification of
each subgraph can be done uniquely. Extending a sub-
graph can be done easily and there is no scope of checking
for automorphism. These k-edge subgraphs can be used
directly to find frequent subgraphs at specified size thus
reducing the computational cost of the identification and

Indian Journal of Science and Technology 7Vol 9 (44) | November 2016 | www.indjst.org

D. Kavitha, V. Kamakshi Prasad and J. V. R. Murthy

exploration of frequent subgraphs at lower levels thus
pruning the search space based on size. The algorithm
used to extend coreset elements is explained below.

4.3 k-Edge Subgraph Extraction
Algorithm: SubgraphExtnsn()

Input: Coreset of D
Output: Supergraphs of coreset

Begin
 1. Let G 1← All 1-edge graphs of G. D = D\{G}
 2. CSg← All corset graphs of G.
 3. For each s in CS
 4. while k<n or while no ext // n- edges of original

graph
 5. let e’ be last edge in s and for each edge e in G 1

 6. if e can be used to extend e’ then
 7. ext ← s <> e
 8. if ext is not already generated
 9. Sk ← Sk ext
 10. S ← S Sk

End.
In this phase, a set of subgraphs of size-k is extracted.

Subgraphs of size k+1 are generated by extending an edge
of k-edge subgraph. This algorithm first identifies the
subset of corset that belongs to the graph G. Then on each
subgraph s of the corset CSg algorithm tries to extend one
edge at a time. An edge e in the set of 1-edge of a graph
G is used to extend subgraphs. All applicable extensions
that have not been previously considered are stored in Sk.
Edge canonical form is adopted to exclude already gener-
ated extensions. Edge subgraph extension is recursively
carried out to further extend edge subgraphs until k-size
subgraphs are generated. If the subgraph reaches size k
or further extension is not possible, the algorithm will

be terminated and the resultant significant patterns are
stored in S.

5. Experimental Evaluation
SSGM Algorithm is implemented in C language. The
experiments are carried out on a Intel® Pentium® Dual
CPU T3400 @2.17 GHz with 4GB RAM. To evaluate
the performance on real datasets, we used the data sets
in a standard graph library available at the32. It provides
information on the anti-cancer screen tests with differ-
ent cancer cell lines. From these, each dataset belongs to a
specific type of cancer with active and inactive. The data-
set is sparse, containing 66 vertices types and four types
of edges. The largest graph has 214 vertices and 214 edges,
on an average 43 vertices and 45 edges.

Another protein data set is from the Pubchem web-
site33. Pubchem is a well maintained collection of various
molecules. It consists of 1178 proteins that are divided
into 691 enzymes and 487 non-enzymes. Average verti-
ces per graph are 285 and edges are 715. Different vertex
labels available are 82.

The scalability of the algorithm against frequency and
data set size are examined shown in Figure 6. For these
experiments FSG and gSpan are chosen to compare as
they are part of the pipeline in the alternative approach.
The scalability of proposed algorithm is linear for min-
ing significant subgraphs on the data set. The frequency
threshold varied between 1% and 10%. It can be observed
that FSG and gSpan grow exponentially whereas the pro-
posed algorithm grows linearly. At higher frequency the
gSpan is little bit faster than the proposed one as the pro-
posed algorithm requires computation of coreset where as
those start mining directly. But, it is negligible when com-
pared with the cost of mining at less frequency thresholds.

Around 30% of computation cost is spent for the com-
putation of coreset since we consider all frequent k-edge
subgraphs in the data set to identify coreset. This is the

Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 8

Significant Subgraph Mining with Representative Set

reason gSpan is faster than the proposed one at higher
frequency threshold. However, when compared with the
cost at lower frequencies this cost is negligible.

To demonstrate the scalability of proposed algorithm
with the varying database size is shown in Figure 7. The
datasets for this experiment are chosen randomly from
the cancer data set. The size of dataset is varied between
1000 and 30000 and the frequency threshold is set to 1.
The proposed algorithm to find significant subgraphs has
shown better performance than FSG and gSpan.

6. Conclusion
The emphasis of proposed algorithm is to provide a
scalable approach to mine significant subgraphs at low
frequency threshold from graph database thus make
available to perform graph applications like classifica-
tion and indexing. The proposed coreset concept evaluate
the significance of the subgraphs based on topological
structure, frequency and similarity between candidate
subgraphs thus reducing exponential search space. The
proposed edge subgraph based mining technique is capa-
ble of retrieving the required subgraphs directly from
the graphs consequently avoiding unnecessary subgraph
extensions and reducing computation cost. The results
obtained in the preliminary tests confirmed the effective-
ness of the proposed algorithm. The proposed algorithm
can also be applied to search structures based on the user
given constraints for general applications.

7. References
1. Cook D, Holder L. Mining Graph Data. John Wiley and

Sons Inc; 2007.
2. Ulaganathan PP, Thirusangu K, Selvam B. Super edge-

magic total labelling in extended duplicate graph of path.

Indian Journal of Science and Technology. 2011 May; 4(5).
DOI: 10.17485/ijst/2011/v4i5/30069.

3. Ulaganathan PP, Thirusangu K, Selvam B. Graceful and
Skolem graceful labelling in extended duplicate graph of
path. Indian Journal of Science and Technology. 2011 Feb;
4(2). DOI: 10.17485/ijst/2011/v4i2/29943.

4. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D.
Tomkins A, Upfal E. The Web as a Graph. ACM PODS
Conference; NY. 2000. p. 1–10.

5. Maio D, Maltoni D. A structural approach to fingerprint
classification. Proceedings of 13th International Conference
on Pattern Recognition; Vienna, Austria. 1996. p. 578–85.

6. Eichinger F, Bohm K, Huber M. Improved software fault
detection - with Graph Mining. Workshop on Mining and
Learning with Graphs; 2008. p. 1–3.

7. Gupta MS, Pathak A, Chakrabarti S. Fast algorithms for
top-k personalized pagerank queries. WWW Conference;
Beijing, China. 2008 Apr. p. 1225–6.

8. Koyuturk M, Grama A, Szpankowski W. An efficient
algorithm for detecting frequent subgraphs in biological
networks. Bioinformatics. 2014; 20(1):200–7.

9. Zhou B, Pei J. Preserving privacy in social networks against
neighborhood attacks. ICDE Conference; Cancun. 2008. p.
506–15.

10. Das K, Ray J, Mishra D. Gene selection using information
theory and statistical approach. Indian Journal of Science
and Technology. 2015 May; 8(S9). DOI: 10.17485/ijst/2015/
v8iS9/51494.

11. Ramya N. On colourings of wheel graph (Wn). Indian
Journal of Science and Technology. 2014 Mar; 7(S3).
DOI:10.17485/ijst/2014/v7i3S/50405.

12. Bordino I, Donato D, Gionis A, Leonardi S. Mining large
networks with subgraph counting. IEEE ICDM Conference;
Pisa. 2008 Dec. p. 737–42.

13. Inokuchi A, Washio T, Motoda H. An apriori-based algo-
rithm for mining frequent substructures from graph data.
Principles of Data Mining and Knowledge Discovery; UK.
2000. p. 13–23.

14. Nijssen S, Kok JN. The Gaston tool for frequent subgraph
mining. Proceedings of the International Workshop on
Graph-Based Tools, Grabats, Electronic Notes In Theoritical
Computer Science. Rome, Italy. 2004 Oct; 127(1):77–87.

15. Kuramochi M, Karypis G. An efficient algorithm for discov-
ering frequent subgraphs. IEEE Transaction on Knowledge
Data Engineering. 2004; 16(9):1038–105.

16. Yan X, Han J. gSpan: Graph-based substructure pattern min-
ing. Proceedings of 2002 IEEE International Conference on
Data Mining; 2002 Sept. p. 1–26.

17. Huan J, Wang W, Prims J. Efficient mining of frequent sub-
graph in the presence of isomorphism. University of North
Carolina Computer Science Technical Report; 2003. p.
1–12.

Indian Journal of Science and Technology 9Vol 9 (44) | November 2016 | www.indjst.org

D. Kavitha, V. Kamakshi Prasad and J. V. R. Murthy

18. Huan J, Wang W, Prins J, Yang J. SPIN: Mining maximal
frequent subgraphs from graph databases. Proceedings
of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining; NY. 2004. p. 581–
6.

19. Vedanayaki M. Graph mining techniques, tools and issues
- A study. Indian Journal of Science and Technology. 2014
Nov; 7(S7). DOI: 10.17485/ijst/2014/v7iS7/61962.

20. Kudo T, Maeda E, Matsumoto Y. An application of boost-
ing to graph classification. Advances in Neural Information
Processing Systems 18 (NIPS’04); 2004. p. 1–8.

21. Ranu S, Singh AK. GraphSig: A scalable approach to mining
significant subgraphs in large graph databases. Proceedings
of IEEE International Conference on Data Engineering;
Shanghai. 2009 Apr. p. 844–55.

22. Yan X, Cheng H, Han J, Yu PS. Mining significant graph
patterns by scalable leap search. Proceedings of SIGMOD;
USA. 2008. p. 433–44.

23. Deshpande M, Kuramochi M, Wale N, Karypis G. Frequent
substructure-based approaches for classifying chemical
compounds. IEEE Transactions on Knowledge and Data
Engineering. 2005; 17(18):1036–50.

24. Kramer S, Raedt LD, Helma C. Molecular feature min-
ing in HIV data. KDD ’01: Proceedings of the Seventh
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining; USA. 2001. p. 136–43.

25. Yan X, Yu PS, Han J. Graph indexing: A frequent structure-
based approach. Proceeding of SIGMOD; NY. 2004. p.
335–46.

26. Cheng H, Yan X, Han J, Hsu C. Discriminative frequent
pattern analysis for effective classification. Proceeding of
ICDE; Istanbul. 2007. p. 716–25.

27. Hasan M, Chaoji V, Salem S, Besson J, Zaki M. ORIGAMI:
Mining representative orthogonal graph patterns.
Proceeding of ICDM; NE. 2007. p. 153–62.

28. Tan P, Kumar V, Srivastava J. Selecting the right interest-
ingness measure for association patterns. Proceeding of
SIGKDD; 2002. p. 32–41.

29. Wale N, Ning X, Karypis G. Trends in chemical graph data
mining. Managing and Mining Graph Data, Springer. 2010
Dec; 40:581–606.

30. Agarwal PK, Peled SH, Varadarajan K. Geometric approxi-
mation via corsets. International Journal of Engineering
Goodman. Welzl, editor. Combinatorial and Computational
Geometry, Cambridge University Press; 2005. p. 1–30.

31. Bunke H, Shearer K. A graph distance metric based on the
maximal common subgraph. Pattern Recognition Letters.
1998; 19(3-4):255–9.

32. Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P. Chem
DB - Update-full-text search and virtual chemical space.
Bioinformatics. 2007; 23(17):2348–51.

33. Available from: http://pubchem.ncbi.nlm.nih.gov

http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341?ijkey=swjzipsmJeGWWzS&keytype=ref
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btm341?ijkey=swjzipsmJeGWWzS&keytype=ref

	_GoBack
	page15

