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Abstract
Objectives: To mine significant subgraphs with user specified objective functions from a set of graphs that are useful 
for understanding the intrinsic characteristics of data in a scalable approach. Methods/Statistical Analysis: A large 
number of candidate subgraphs generated during mining process causes both computational and statistical problem. In 
this paper, Significant SubGraph Mining-SSGM proposes an algorithm to find significant subgraphs by using a small set of 
representative patterns - coreset that overcomes these problems. Furthermore, an edge graph notation is used to represent 
a graph that enables to mine patterns directly without using separate mining algorithm. Findings: The number of possible 
candidates is generally exponential in search space and techniques employed are mostly focussed on monotonic property. 
The proposed algorithm offers simple, yet efficient optimizations to significantly improve performance by pruning the 
search space and exploring representative graphs. It avoids enumeration of all frequent subgraphs which cause redundancy 
and extreme mining time. The identified coreset elements are extended that provide optimal solution patterns and adopted 
edge graph notation mine subgraphs directly. Application/Improvements: Experimental results shows that the proposed 
algorithm is effective and efficient for mining significant subgraphs in terms of computational cost, scalability and time 
over existing methods. The algorithm can be applied to find different types of significant patterns in a scalable manner 
by using any objective function according to the problem domain including support, correlation measure and feature set.

1. Introduction
Mining graph data, the extraction of useful knowledge 
in the form of graphs has more significance as graph is a 
powerful way to represent structured and complex data1. 
Attributed graphs2,3 can be used to address various prob-
lems such as graphical symbol recognition, shape analysis, 
protein structure analysis, computer network monitoring, 
web data analysis, social networks, XML data4–12 and so 
on. A useful task to perform on this type of applications is 
frequent subgraph mining. 

Frequent subgraph mining problem can be defined as 
finding a set of frequent subgraphs from a set of graphs in 
a graph database or from a large single graph. A subgraph 
is said to be frequent if it exists in at least T graphs in a 

data set D, where T is a user defined frequency support. 
Frequent subgraphs are useful to accomplish basic mining 
tasks such as description that provides concise and suc-
cinct summarization and discrimination, classification, 
clustering and building indices on graph data. Mining 
frequent subgraphs has been extensively studied and 
various efficient graph based algorithms such as AGM, 
FSG, FFSM, gSpan, Gaston, SPIN13–19 etc. are developed. 
A common feature of all these algorithms is that they 
completely enumerate all the frequent subgraphs. The 
large number of extracted frequent subgraphs may not be 
useful to get good classification accuracy or to determine 
essential characteristics such as disease identification and 
drug discovery applications. Rather, a small set of sig-
nificant subgraph patterns are useful to learn important 
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characteristics and structures hidden in data sets more 
easily. Finding such significant patterns that appear at low 
frequency threshold from the database is computational 
and statistical problem.

1.1 Threshold Bottleneck 
Generally in mining process, at first, all frequent subgraphs 
are mined and are used to select significant patterns based 
on user defined objective function. Clearly, this two-step 
traditional process is not scalable to find significant sub-
graphs due to the reason - low frequency threshold has 
to be set for many objective functions which generates 
an exponential search space and slow mining process. 
Hence, mining frequent patterns with low threshold 
becomes the bottleneck of the mining process in Figure 1. 
At high value threshold, a user has to sacrifice the quality 
and quantity of discovered significant patterns. Generally 
most significant and discriminate patterns are less in 
number when compared to frequent patterns; hence, high 
threshold value suppresses mining of all significant pat-
terns.

Here are some existing algorithms that mine sig-
nificant patterns and find use in applications. An 
application of boosting for classifying labelled graphs20, 
general structures for modeling chemical compounds, 
natural language texts and bio-sequences was presented. 
A feature vector21 representation used to find significant 
patterns. Unfortunately, all (closed) frequent subgraphs 
needs to mine first in this practice. The proposed leap 
search22 to find patterns, focussed on the databases that 
can be divided into positive and negative sets. Frequent 
structures as features23,24 was used to classify chemi-

cal compounds. Frequent graph patterns were also used 
as indexing features by25 to perform fast graph search. 
Pattern-based classification models were demonstrated26 
and in these methods, only distinguishable significant 
patterns are used, while mining all frequent subgraphs 
could result in poor performance and low accuracy 
such as over fitted or under fitted classifiers.27 discussed 
mining representative orthogonal graph patterns using 
α-orthogonal β-representative set to find optimal solu-
tion. 21 existing measures to evaluate the significance28 
of the patterns were surveyed. Branch-and-bound search 
technique was adopted by many of the existing applica-
tions with a derived bound for a specific function. Branch 
and bound search technique may bring poor results as it 
could fall into local maxima due to very large search space 
in graph data sets.

In this paper, we propose an algorithm that addresses 
mining frequent graph patterns which exploit the sig-
nificant patterns. The proposed algorithm is able to find 
significant subgraphs in a limited period of time, 1. By 
using a small set of approximate patterns and 2, By prun-
ing search space. First, a small set of subgraphs referred 
as coresets that play a key role in the extraction of signifi-
cant graphs are identified. These coresets are enough to 
mine significant frequent patterns which are effectively 
useful in applications such as graph indexing, classifica-
tion and clustering29. Then, edge subgraphs are created as 
the representatives of actual graphs. They can be used to 
mine frequent patterns directly with specified graph size, 
reducing the cost of candidate generation and incremen-
tal growth. Pruning search space is an effective technique 
to complete the process in time. Size based, support based 
and structural pruning are three important methods 
in pruning search space. Pruning search space is itself 
employed in the proposed process of mining. Adopted 
coresets concept avails the structure based and support 
based pruning technique. Edge subgraphs have been used 
to mine frequent patterns directly at specified sizes, thus, 
size based pruning is implemented. 
In summary, our contributions are:

•	 A novel frame work to mine significant frequent 
subgraphs in a data set is proposed. It is based 
on an idea to avoid enumeration of all frequent 
subgraphs which cause redundancy and extreme 
mining time.

•	 It offers a heuristic search with novel optimiza-
tions to significantly improve performance by 
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pruning the search space by adopting coresets 
and exploring approximate graphs. 

•	 To enumerate the possible subgraphs of any 
size, edge graph notation is adopted to mine 
subgraphs directly at specified size and it avoids 
exploration of all frequent subgraphs at small 
sizes.

•	 A variation of FSG is proposed to mine all fre-
quent subgraphs than in traditional manner.

2. Preliminary Concepts
Graph: A labelled graph is a quadruple G = (V, E, L, l) 
where V is a finite set of vertices, E is a set of edges and E

V x V , L is a set of labels and l(V → L) is a function 
that assigns a unique label to each vertex of graph G.

Subgraph: A  graph  G’ = (V’, E’) is a subgraph of 
another graph G = (V, E) iff V’⊆ V, and E’⊆ E ∧ ( (v1, v2)∈ 
E’ → v1, v2∈ V’).

Subgraph Isomorphism: For two labelled graphs G 
and H, a subgraph isomorphism is a bijection f: V(G) → 

V(H) such that  v V(G), L(v) = L’(f (v)) and  (

,v)  E(G)⇔ ( f( ), f(v))  E(H) and L( , v) = L’(f (
), f (v)) where L and L’ are labels of G and H respectively. 
This mapping preserves labels on the vertices and edges.

Frequency: Given a graph dataset D = {G1, G2,..Gn} and 

a subgraph g, the frequency f of g, is .
Frequent Subgraph: Given a graph dataset D = {G1,…

Gn}, a subgraph g and a frequency threshold T, a subgraph 

g with frequency  is said to be frequent if and 
only if f >T w.r.t |D|

Significant Subgraph: Given a graph data set D = 
{G1,G2,…Gn} and an objective function F, a general prob-
lem definition for mining significant graph patterns can 
be formulated in two different ways: 1. Find all subgraphs 
g such that F(g) ≥ T where T is a significance threshold; or 
2. Find a subgraph g* such that g* = argmaxgF(g).

Coreset: A coreset30 is a small subset CS with respect to 
the given graph dataset D that approximates the original 
set D, that is finding the coreset CS for the given objective 
function F provides an approximate solution for the prob-
lem on the dataset D.

Similar Graphs: Similarity between two graphs is a 
symmetric binary function F × F → [0, 1]. The similarity 

based on the maximum common subgraph31 is given as: 
sim(Gi,Gj) = |Gc|/max(|Gi|,| Gj|) , where Gc is the maxi-
mum common subgraph of Gi and Gj.

3. Mining Significant Graph 
Patterns 

3.1 Overview of Significant Graph Pattern 
Mining
As mentioned earlier, interesting patterns are not simply 
those that occur frequently, instead they are the patterns 
that contain some statistical significance based on the 
defined objective function. Figure 2 shows a sample dataset 
of amino acids. An amino acid consists of a central carbon 
atom attached to a carboxyl group (-COOH), an amino 
group (-NH2), a hydrogen atom and a side group (-R), giv-
ing the general formula R-CH-NH2-COOH. Amino acids 
differ with each other based on the atoms composed in 
the side group. The characteristics and distinguishing of 
amino acids are determined by side group and they may 
vary in size, charge, added atom type etc. The carbon atom 
of each amino acid is attached with four different groups 
and thus is asymmetric. Asparagine  and  glutamine  are 
uncharged but have  polar  amide groups with extensive 
hydrogen-bonding capacities. Arginine and  lysine amino 
acids are positively charged. Based on the traditional fre-
quent subgraph mining technique, the largest frequent 
subgraphs that can be extracted with support frequency 
of 50% is shown in Figure 2. It can be observed that 
these frequent subgraphs have less significant informa-
tion that might be useful for characterizing the amino 
acids. Instead, mining subgraphs associated with subset 
of atoms which have significance in other words which 
satisfies objective function is required.

In order to mine significant patterns, the proposed 
algorithm using a small set of approximate subgraphs 
(coreset) according to their support and significance 

https://xlinux.nist.gov/dads/HTML/graph.html
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7731/
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from the data set. The elements of coreset are used as 
basic candidates to find optimal patterns. Here, optimiza-
tion problem is solved directly. We consider any rational 
objective function such as frequency support, statistical 
significance, discriminative ratio, structural correlation 
and correlation measure as a general definition to mine 
significant patterns. The user can give his perceptions to 
define the significance. Objective of the proposed con-
cept is to design a general mining framework that can be 
applicable to a variety of applications. Next we describe 
the proposed technique to capture the set of approximate 
subgraphs that generates significant patterns.

3.2 Introduction to Coreset
Finding approximate solutions is one of the classical tech-
niques to solve hard problems. “Small” amount of “most 
significant” information is extracted from the given data 
and perform the computation on this extracted data to get 
the solution of the original problem. A coreset cs of a set 
S with respect to problem domain is a small subset that 
represents the original set S and approximates the solu-
tion result set, that is, identification of the representative 
set known as coreset provides an accurate solution for the 
original set S. Corsets were introduced in computational 
geometry as a small subset of points used to find approxi-
mate solutions. In the problem, coreset of a data set D are 
a set of small subgraphs that are embedded and approxi-
mates the resultant frequent subgraphs, in the sense that 
coreset provides an approximate solution. The advantage 
of introducing the concept of coreset is that an optimal 
solution can be computed and fasten the computation 
of discovering significant frequent substructures for the 
given data set by applying any fast approximation algo-
rithm.

For the given graph data set D, coreset is the set of fre-
quent subgraphs that can guarantee the generation of all 
significant frequent subgraphs with minimum support T. 
Minimum support excludes generation of infrequent sub-
graphs. Anti-monotone property effectively prunes search 
space. Based on anti-monotone property any supergraph 
g’ of an infrequent graph g is also infrequent. Coreset can 
be defined as the characteristic representatives of original 
graph.

Selection of coreset elements is application dependent 
and may require domain knowledge. To select appropriate 
substructures as coreset the points to be considered are: 1. 
The significant patterns are to be statistically frequent, 2. 
Coreset elements are such that these preserve structural 

information of data set and approximations of result sets 
and 3. Elements of coreset are with minimal overlapping 
structure.

For the application of amino acids Figure 2, frequent 
subgraphs of k-size are shown in Figure 3. The subgraphs 
3(a), 3(b), 3(c) and 3(d) are with the frequency sup-
port 100%, 3(e) is with 75% and 3(f) and 3(g) are with 
50% frequency support. In general these frequent sub-
graphs are used to generate supergraphs and to identify 
frequent as these subgraphs are frequent. From these 
subgraphs the coreset elements are identified that have 
statistical significance and representativeness. Along with 
these another important factor to find optimized coreset 
substructures is structure of the elements. If the search 
structure is examined horizontally, it can be observed 
that the subgraphs along the neighbour branches likely 
to have similar composition and frequencies which dif-
fer only in their deterministic features in Figure 3. The 
structural composition of (a), (b), (c) and (d) varies only 
by one edge and the frequency support is almost identical. 
Accordingly, in search space, neighbour branches show 
strong similarity in pattern composition. The neighbour 
subgraphs which have structural overlapping can be dis-
carded as the elements of the coreset to reduce redundant 
supergraphs generation. Coreset elements are identified in 
such a way that they represent effective patterns to extend 
significant patterns, there by pruning the search space 
using the structural and support pruning methods.

3.3 Preposition
Let C1,..,Cn be the elements of coreset of data set D and 
F1,…Fn be the frequent subgraphs of data set D, then fre-
quent subgraphs of C1…Cn be the exactly same as F1,…Fn 
frequent graphs in data set D.

4. SSGM→ Significant Subgraph 
Mining Framework
This section starts with the presentation of Significant 
Subgraph Mining algorithm to mine significant sub-
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graphs. Then findcoreset() algorithm which identifies 
optimal subgraphs as elements of coreset is explained. 
Then notation of edge graphs is introduced that is used to 
represent actual graphs in edge format. Enumeration of 
significant subgraphs using SubgraphExtnsn() algorithm 
is discussed in detail as perfect extension of a subgraph 
reduces redundant supergraph generation by not losing 
significant patterns.
Algorithm: Significant Subgraph Mining (SSGM)

Input: A graph dataset D
Output: Significant patterns

Begin
 1. F1← All frequent 1- edge subgraph in D in Canonical 

edge form.
 2. CK← findcoreset (F1).
 3. for each G belongs to D do.
 4. S ←SubgraphExtnsn(n,F1,CK ). 
 5. result ← 0.
 6. while S≠  do.
 7. for each s in S do.
 8. if s is not already in result then.
 9. result ← result s
End

Step 1: Initially, all frequent 1-edge graphs of the 
data set D are enumerated. A 1-edge graph is said to 
be frequent if its frequency support is greater than the 
threshold defined for data set D. i.e. its occurrence should 
be at least in T number of graphs in data set D. Based on 
anti-monotone property, only these edges participate in 
frequent subgraphs. (step 1). Then algorithm findcoreset 
(F1) is executed to identify the elements of coreset that 
are further used to find significant graphs. findcoreset(F1) 
algorithm will be elaborated later in the next portions of 
the work. Discovered coreset is used as input to generate 
significant graphs by using SubgraphExtnsn() algorithm 
(step 4). Significant subgraphs are generated by iteratively 
executing SubgraphExtnsn() algorithm for each graph G, 
in the data set D. At this stage significant graphs are gen-
erated for the given coreset and the last step prunes out 
redundant patterns if any appeared. 

4.1 Finding Representative Set
The proposal is to mine significant elements and use them 
to identify significant subgraph patterns in the data set. 
In main algorithm the frequent edges generated at step 1 
are the input to this algorithm. All frequent k-edge sub-
graphs are generated at first and then elements of coreset 

are identified which possess the properties explained in 
the introduction of coreset. Along with those the coreset 
elements in the proposed algorithm capture structural 
information of the patterns so that the graph occurrence 
is certain in the outcome. The elements of coreset are 
further used to construct result sets. The process of iden-
tifying coreset is defined in the below algorithm.
Algorithm: findcoreset()

Input:     F1←  All frequent 1- edge subgraph in D in 
Canonical edge form.

Output:   Coreset CS.
S1←  All frequent 1- edge subgraph in D in Canonical 

edge form.
S, Sj←a data structure to store intermediate graphs.

Begin
 1. Sj←  S1  
 2.    while j<k , for each s from Sj  do. 
 3.        while S1≠   do.
 4.            let e’ be last edge of  s and for each edge e in S1.
 5.            if e can be used to extend e’ then.
 6.            ext ← s <> e.
 7.            if  ext is not already generated then.
 8.            Sj ← Sj  ext.
 9.   S← Sj  All subgraphs with k-edge in edge-format .
 10. for each s in S  do.
 11.     find fcnt of s in S.
 19. find t and T   // set threshold T and t – min  and 

max threshold  based on ranges  appeared and user 
given significance.

 20. for each s in S do. 
 21.     if  s.fcnt≥  t or s.fcnt ≤T then. 
 22.     CSk ← CSk s .
 23. for each s in CSk 
 24.       if  sim(s1, s2) ≤ x then.
 25.     CS ← CS s
End

This algorithm takes frequent 1-edge graphs as input 
and tries to extend the size of subgraph by adding an edge 
at a time. During iteration, it generates edge subgraphs 
and the size of each subgraph is greater than the previ-
ously generated subgraph by one edge. In such a way it 
generates k-edge subgraphs (steps 1-8). The frequency 
of each of these k-edge subgraphs is identified. Based on 
the actual frequency in the graph data set and the user 
defined significance, upper and lower frequency sup-
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port thresholds are set and all frequent k-edge subgraphs 
of the data set S are identified (steps 9-22). As we know 
subgraphs with higher frequencies may not necessar-
ily reflect their respective significance, upper and lower 
frequency thresholds are identified using normalization 
technique. Now we have to discard the maximal overlap-
ping elements of the set to reduce redundant supergraphs 
generation as overlapping elements are relatively not inde-
pendent. To discard similar graphs graph distance metric 
(23) along with frequency support is used. According to 
the statistical frequency and relativeness kth elements are 
chosen and identified as elements of corset (step 24-25). 
A corset is a set of k-edge subgraphs that are statistically 
frequent and participate in resultant significant frequent 
graphs. Identification of coreset prunes subgraphs that 
may generate redundant graphs and that do not satisfy 
the support constraint as well as which may not become 
the significant parts in resultant graphs. 

4.2 Edge Graphs
Generally significant graph mining algorithms are used 
along with frequent graph mining algorithms to retrieve 
frequent significant graphs. We proposed a technique to 
mine graph patterns. 

A graph is an ordered pair G = (V, E) made up of set 
of vertices V and the set of edges E. The graph is labelled, 
that is, each vertex and edge has an associated label from 
the given set of vertex labels L (V) and edge labels L (E). 
Each vertex (or edge) of the graph may not have a unique 
label. In other words, many vertices (or edges) of the 
graph may have same label. Along with the actual labels 
of vertices in the graph, vertices are labelled by using con-
secutive integers {1,…,n} where n is number of vertices in 
the graph. Figure 4 shows an example graph. Actual ver-
tices of the graph G are{x,y,x,z,x}. An edge is shown with 
pair of vertices it connected and the label of that edge 
(u,v,l). The edges of the above graph are (x,x,a), (x,y,a), 
(x,y,b),(x,z,c),(x,z,d). It is observed that the label of the 
edge may be different even if the labels of comprised ver-
tices are same. Vertices are labelled by using integers to 
identify each and every vertex uniquely and thus to iden-
tify edges. Now the edges of graph G are represented in 
the form of (1-3), (1-2), (1-4), (3-4), (2-5).

Let G be a graph with a single label per vertex, S 
(VS,ES,LS) be a subgraph of G and all of its vertex labels are 
unique, i.e., LS(v) ≠LS(v′)for all v and v′ in VS such that v 
≠ v′. To calculate subgraph S directly, the S to G Coreset 

has to be considered besides the domains of variables by 
enforcing vertex and edge consistency. Since all vertices 
of graph have unique labels and the query has unique 
labels, we can easily identify every vertex that participates 
in subgraphs and no vertex can appear more than once.

In actual graph, it is difficult to identify each vertex 
and edge uniquely as three vertices contain the same 
label x. That’s why, extension of subgraphs and finding 
embedded edges and vertices are also difficult. The com-
plexity involved in the above tasks can be reduced by 
using unique labels which are introduced in edge graph 
notation. According to edge-graph notation used to rep-
resent the graph G, vertices are represented as (1,x), (2,y), 
(3,x), (4,z), (5,x) and edges are (1,2,a), (2,5,b), (1,3,a), 
(3,4,c), (1,4,d). In computation, edge (1-2) represents an 
actual edge (1,2,a) that in turn (x,x,a). The size of a graph 
G = (V, E) is defined to be equal to number of edges in a 
graph |E|. Adding an edge e = (u, v) to a size-k connected 
graph results connected (k + 1) sized graph. 

1-edge subgraphs of graph G are represented as {(1-3), 
(1-2), (1-4), (3-4), (2-5)} shown in Figure 5. Here the edge 
set of graph is represented and from this, only the possible 
subgraph extensions can be generated with reference to 
the actual graph, contrary to the general perception. As a 
consequence, expensive generation of all combinational 
subgraphs that don’t appear in actual graph are not neces-
sary. Thus set of 2-edge subgraphs generated from 1-edge 
subgraphs of graph G are {(1-3,1-2), (1-3,1-4), (1-3,3-4), 
(1-2,1-4), (1-2,2-5), (1-4,3-4)} and 5-edge subgraph is 
{(1-3, 1-2, 1-4, 3-4 , 2-5)} and is same of original graph. 
If we observe that subgraphs at same edge level share the 
core subgraph and k+1-edge subgraphs differ from k-edge 
subgraphs by one edge only. These edge subgraphs are 
representatives of original graph and identification of 
each subgraph can be done uniquely. Extending a sub-
graph can be done easily and there is no scope of checking 
for automorphism. These k-edge subgraphs can be used 
directly to find frequent subgraphs at specified size thus 
reducing the computational cost of the identification and 
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exploration of frequent subgraphs at lower levels thus 
pruning the search space based on size. The algorithm 
used to extend coreset elements is explained below.

4.3 k-Edge Subgraph Extraction
Algorithm: SubgraphExtnsn()

Input: Coreset of D
Output: Supergraphs of coreset

Begin
 1. Let G 1← All 1-edge graphs of G. D = D\{G}
 2. CSg← All corset graphs of G.
 3. For each s in CS    
 4.     while k<n or while no ext      // n- edges of original 

graph   
 5.        let e’ be last edge in s and for each edge e in G 1 

 6.             if e can be used to extend e’ then
 7.             ext ← s <> e
 8.              if  ext is not already generated
 9.             Sk ← Sk  ext
 10.   S ← S  Sk

End.
In this phase, a set of subgraphs of size-k is extracted. 

Subgraphs of size k+1 are generated by extending an edge 
of k-edge subgraph. This algorithm first identifies the 
subset of corset that belongs to the graph G. Then on each 
subgraph s of the corset CSg algorithm tries to extend one 
edge at a time. An edge e in the set of 1-edge of a graph 
G is used to extend subgraphs. All applicable extensions 
that have not been previously considered are stored in Sk. 
Edge canonical form is adopted to exclude already gener-
ated extensions. Edge subgraph extension is recursively 
carried out to further extend edge subgraphs until k-size 
subgraphs are generated. If the subgraph reaches size k 
or further extension is not possible, the algorithm will 

be terminated and the resultant significant patterns are 
stored in S.

5. Experimental Evaluation
SSGM Algorithm is implemented in C language. The 
experiments are carried out on a Intel® Pentium® Dual 
CPU T3400 @2.17 GHz with 4GB RAM. To evaluate 
the performance on real datasets, we used the data sets 
in a standard graph library available at the32. It provides 
information on the anti-cancer screen tests with differ-
ent cancer cell lines. From these, each dataset belongs to a 
specific type of cancer with active and inactive. The data-
set is sparse, containing 66 vertices types and four types 
of edges. The largest graph has 214 vertices and 214 edges, 
on an average 43 vertices and 45 edges. 

Another protein data set is from the Pubchem web-
site33. Pubchem is a well maintained collection of various 
molecules. It consists of 1178 proteins that are divided 
into 691 enzymes and 487 non-enzymes. Average verti-
ces per graph are 285 and edges are 715. Different vertex 
labels available are 82.

The scalability of the algorithm against frequency and 
data set size are examined shown in Figure 6. For these 
experiments FSG and gSpan are chosen to compare as 
they are part of the pipeline in the alternative approach. 
The scalability of proposed algorithm is linear for min-
ing significant subgraphs on the data set. The frequency 
threshold varied between 1% and 10%. It can be observed 
that FSG and gSpan grow exponentially whereas the pro-
posed algorithm grows linearly. At higher frequency the 
gSpan is little bit faster than the proposed one as the pro-
posed algorithm requires computation of coreset where as 
those start mining directly. But, it is negligible when com-
pared with the cost of mining at less frequency thresholds. 

Around 30% of computation cost is spent for the com-
putation of coreset since we consider all frequent k-edge 
subgraphs in the data set to identify coreset. This is the 
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reason gSpan is faster than the proposed one at higher 
frequency threshold. However, when compared with the 
cost at lower frequencies this cost is negligible.

To demonstrate the scalability of proposed algorithm 
with the varying database size is shown in Figure 7. The 
datasets for this experiment are chosen randomly from 
the cancer data set. The size of dataset is varied between 
1000 and 30000 and the frequency threshold is set to 1. 
The proposed algorithm to find significant subgraphs has 
shown better performance than FSG and gSpan.

6. Conclusion
The emphasis of proposed algorithm is to provide a 
scalable approach to mine significant subgraphs at low 
frequency threshold from graph database thus make 
available to perform graph applications like classifica-
tion and indexing. The proposed coreset concept evaluate 
the significance of the subgraphs based on topological 
structure, frequency and similarity between candidate 
subgraphs thus reducing exponential search space. The 
proposed edge subgraph based mining technique is capa-
ble of retrieving the required subgraphs directly from 
the graphs consequently avoiding unnecessary subgraph 
extensions and reducing computation cost. The results 
obtained in the preliminary tests confirmed the effective-
ness of the proposed algorithm. The proposed algorithm 
can also be applied to search structures based on the user 
given constraints for general applications.
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