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Abstract
Convex optimization can provide both global as well as local solution; in the case of non convex optimization, it is difficult 
to get global solution. This paper presents some optimality criteria for the non convex programming problem whose objec-
tive function is fuzzy pseudo convex functions.
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1. Introduction  
An optimization problem is convex if it is the minimiza-
tion of a convex function11 (or maximization of a concave 
function) where the admissible points are in a convex 
set14. The fundamental results in convex analysis6,12 say 
that a locally optimal solution of a convex problem is also 
globally optimal. If the problem is convex it is enough to 
guarantee that the solution is globally optimal. In non 
convex optimization7, choosing the best optimal solu-
tion among different local optimal solutions is a difficult 
task. Convex optimization2,3 has provided both a power-
ful tool and an intriguing mentality to the analysis and 
design of varieties of models over the last few years. The 
challenge is on non convex optimization problems4,16,17 
and their applications. Deriving the optimality criteria 
of non-convex programming problem is difficult task 
in real field. Weir19 has derived the optimal solution in 
non linear programming problem duality with strong 
pseudo convex function. Rueda et al.13 have derived the 
 optimality criteria in mathematical programming with 
invex function2,3,9,10. Sakawa et al.16,17 have derived some 
results on non-convex programming problems in fuzzy 
domain5,8 as well as genetic algorithm. Behera and Nayak18 
have proposed a method to get the fuzzy optimal solution 

for non-linear programming problem2,15,18. Considering 
the existing result, we have presented some optimality 
criteria for non-convex programming problems emphasis 
on fuzzy pseudo convex functions19.  

Definition 1.1 
Convex Function: Let S be a nonempty convex set in Rn. 
The function f S R: →  is said to be convex in S if

f x y f x f y( ( ) ) ( ) ( ) ( )l l l l+ − ≤ + −1 1  for each 
x y S, ∈  and for each l ∈[ , ]0 1 .

Definition 1.2 
Concave Function: Let S be a nonempty convex set in Rn. 
The Function f S R: →  is said to be concave is S if  

f x y f x f y( ( ) ) ( ) ( ) ( )l l l l+ − ≥ + −1 1  for each 
x y S, ∈  and for each l ∈[ , ]0 1 .

Definition 1.3
Pseudo Convex Function: Let f be a function defined on 
some open set in Rn containing S. f is said to be Pseudo 
convex at y S∈ , if it is differentiable at y and satisfies the 
following conditions,

 ∇ − ≥ ⇒ ≥f y x y f x f y( ).( ) ( ) ( )0
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Note: (a)  f is said to be Pseudo convex on S if it is Pseudo 
Convex at each x S∈ .

 (b)  When ∇ ⋅ − ≤ ⇒ ≤f y x y f x f y( ) ( ) ( ) ( )0  then 
f is said to be Pseudo concave function. 

Definition 1.4
Quasi Convex Function: Let S be convex set in Rn and f 
be a function defined on S then f is said to be quasi- convex 
at y if f x y f x f y( ( ) ) min ( ), ( )l l+ − ≤ { }1  for each x S∈  
and 0 1≤ ≤l  or ∇ ⋅ − ≤f y x y( ) ( ) 0.

If ∇ ⋅ − ≥f y x y( ) ( ) 0, then f is said to be quasi  concave.

Definition 1.5
Invex Function: The function f is invex at a point y S∈  if 
there exists a function h : S Rn→  such that x(f) such that 
f x f y x y f y( ) ( ) ( , ) ( )− ≥ ⋅∇h  for x S∈ .

Different types of convex or convex like functions are 
defined on the fuzzy domain as follows:
Let K ⊆ F0 where F0 is family of fuzzy numbers.

Definition 1.6
Fuzzy Convex Function: A fuzzy mapping F K F: → 0 is 
said to be convex if for every l ∈[ , ]0 1  and  x y K, ∈ .

F x y F x F y( ( ) ) ( ) ( ) ( )l l l l   + − ≤ + −1 1

Definition 1.7
Fuzzy Concave Function: A fuzzy mapping F K F: → 0 is 
said to be concave if for every l ∈[ , ]0 1  and  x y K, ∈ .

F x y F x F y( ( ) ) ( ) ( ) ( )l l l l   + − ≥ + −1 1

Definition 1.8
Fuzzy Pseudo Convex Function: A fuzzy mapping 
F K F: → 0 is said to be pseudo convex if 
∇ − ≥ ⇒ ≥F y x y F x F y( ).( ) ( ) ( )   0  for x y K, ∈ .

Definition 1.9
Fuzzy Quasi Convex Function: A Fuzzy mapping 
F K F: → 0 is said to be quasi convex if for every l ∈[ , ]0 1  
and  x y K, ∈ .
F x y Sup F x F y( ( ) { ( ), ( )}l l   + − ≤1  or ∇ − ≤F y x y( ).( )   0

Definition 1.10
Fuzzy Quasi Concave Function: A Fuzzy mapping 
F K F: → 0 is said to be quasi concave of for each l ∈[ , ]0 1  
and  x y K, ∈ .

F x y Inf F x F y( ( ) { ( ), ( )}l l   + − ≥1  

Definition 1.11
Fuzzy Invex Function: A Fuzzy mapping F K F: → 0 is said 
to be invex if F x F y x y F y( ) ( ) ( , ). ( )    − ≥ ∇h  for  x y K, ∈ .

Theorem 1.12
Let ‘f ’ be differentiable on the open set C ⊂ Rn .
(i) If f is pseudo convex on C then it is also quasi convex 

on C and a global minimum at any x ∈ C such that 
∇ f x( )

 = 0,
(ii)  If f is quasiconvex on C and has local minimum at  

any x ∈ C such that ∇ f x( ) = 0, then it is pseudo  convex 
on C.

Various type of mathematical model of non-convex 
optimization problem are presented in section-2. Some 
optimality criteria for those non-convex optimization 
problems are discussed and verification of the  optimality 
criteria, examples are done with the help of fuzzy 
arithmetic1,5 in section-3. Finally the conclusion is given 
in Section 4.

2. Optimization Model
Fuzzy nonconvex optimization model may be analysed by 
classifying them in the following manner:

Case-1: Unconstrained fuzzy nonconvex programming 
problem:
    Minimize f( x) 
            subject to x ∈ K
where f ( x ) is either fuzzy pseudo convex or fuzzy quasi 
convex functions.

Case-2 : Constrained fuzzy nonconvex programming 
problem:
These may be of four types:

(i) minimize      f (x )/ g (x)<0

         and      x>0
 

i 





{ }

   
 (1)

where f ( x) is fuzzy pseudo convex and g xi ( )  are fuzzy 
convex.

(ii) minimize      f (x )/ g (x)<0

         and      x>0
 

i 





{ }

   
 (2)

where f ( x ) is fuzzy quasi convex and g xi ( )  are fuzzy 
 convex.
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(iii) minimize      f (x )/ g (x)<0

         and      x>0
 

i 





{ }

   
 

 (3)

where f ( x) is fuzzy pseudo convex and g xi ( )  are fuzzy 
quasi convex.

(iv)

             

minimize      f (x )/ g (x)<0

         and      x>0
 

i 





{ }

    
(4)

where f ( x) is fuzzy convex and g xi ( )  are fuzzy pseudo 
convex or fuzzy quasi convex.

3. Optimality Criteria
In this section, the optimality conditions for all the 
above fuzzy nonconvex programming problems are 
 discussed.

Case-1: 
(a) Let f ( x) be a fuzzy pseudo convex function. Then 

x0  is fuzzy global minimum solution if and only if 
∇ −f x( )

0 0
(b) f ( x) is fuzzy quasi convex function at x0 and has fuzzy 

local minimum at x0 such that ∇ −f x( )
0 0, then f to be 

fuzzy pseudo convex function satisfying  the property 
as (a).

(i) The necessary conditions that the fuzzy minimum 
solution exists at x0  in f ( x ) if it satisfy he following 
conditions; 

∇ + ∇ −f x g xi( ) ( ) 
0 0 0l

                            l g xi ( )
0 0−

                            λ ≥ 0 
The sufficient condition that the f ( x) has fuzzy global 
minimum value at x0 if f ( x) is fuzzy pseudo convex  
at x0.

Proof : 
Let x0 be the global minimum, then ∇ −f x( )

0 0
Suppose that ∇ −f x( )

0 0

 ⇒ ∇ − − ∈f x x x for each x K( )( )  


0 0 0

   ⇒ >f x f x( ) ( )


0  as f is fuzzy pseudo convex

   ⇒  x0  is the global minimum.

Conversely, let x0 is the optimal solution of f x( )  
so f x f x( ) ( )


> 0

                         ⇒ − >f x f x( ) ( ) 


0 0

 
⇒

−
−

− >
f x f x

x x
x x

( ) ( )
.( )

 

 
 



0

0
0 0

                          ⇒∇ − >f x x x( )( )  


0 0 0

                          ⇒∇ − −f x x x( )( )  
0 0 0

                          ⇒∇ −f x( )
0 0

(ii) The necessary conditions that the fuzzy minimum 
solution exists at x0 for f ( x ) if it satisfy the following 
conditions; 

 ∇ + ∇ −f x g xi( ) ( ) 
0 0 0l

                            l g xi ( )
0 0−

                              λ ≥ 0 
The sufficient condition that the f ( x) has fuzzy global 
minimum value at x0 if f ( x) is fuzzy quasi convex at x0  
and ∇ −f x( )

0 0.
(iii)  The necessary condition that the point x0to be fuzzy 

minimum solution of f ( x) if it satisfy the following 
necessary conditions,

     ∇ + ∇ −f x g xi( ) ( ) 
0 0 0l

   l g xi ( )
0 0−

   g xi ( )0 0≤

   l ≥ 0
The sufficient conditions x0 is a fuzzy optimal solution 
of the minimization problem i.e., f( x0) = min. f(x) if f 
be a fuzzy Pseudo Convex at x0 and gi be differentiable 
and fuzzy quasi convex at x0 .. In case of maximization 
problem f is fuzzy Pseudo concave function and gi  are 
differentiable fuzzy quasi convex at x0 .

Proof :
 g xi ( ) ≤ 0  for all x K∈  and i = 1, 2, 3, .... n.
 Let g xi ( )  be fuzzy quasi convex on K
 ⇒ ∇ − <g x y xi ( )( )  


0  for each  x y K, ∈

 For any positive value of l we put

l i ig x y x∇ − <( )( )  


0.

 Since x0 is the solution, 
 l i ig x y x∇ − <( )( )  


0 for all i

⇒ ∇ − <l g x y xi ( )( )  


0
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But, ∇ + ∇[ ]−f x g xi( ) ( ) 
0 0 0l

               ⇒  ∇ + ∇[ ] − − ∈f x g x y x for all y Ki( ) ( ) ( )   


0 0 0 0l

               ⇒  ∇ − > ∇ − <f x y x g x y xi( ).( ) ( ( )( )  


   


0 0 0 00 0l l  
 (Sum is zero one is – ve so other one +ve)

               ⇒  f ( x) is fuzzy Pseudo convex at x0.

             ⇒  f y f x for all y K( ) ( )  ≥ ∈0  

             
⇒

 
f x min f y

x K
( ) ( ) 


0 =

∈

 So, x0 is minimum value of f( x ) .

(iv)   The necessary conditions that the compromise  optimal 
value exists at x0 in f( x ) if it satisfy he  following 
 conditions; 

   ∇ + ∇ −f x g xi( ) ( ) 
0 0 0l

                           l g xi ( )
0 0−

                           λ ≥ 0 
The sufficient condition that the point x0 is compromise 
local minimum if the Hessian matrix associated with the 
constraints is negative definite and is local maximum if 
the Hessian matrix associated with the constraints are 
positive definite.  

Example-3.1:
 Minimize  x x1

2
2
2+

 subject to   x x1 22 5+ ≤

      3 41 2  x x+ ≤

  and        x x1 2 0, ≥

To find x x x= ( , ) 1 2  which minimize f (x) =  x x1
2

2
2+  and 

 satisfies the constraints.
     x x1 22 5+ ≤

   3 41 2  x x+ ≤
  and  x x1 2 0, ≥

By using the necessary conditions:

(i)  ∇ + ∇ −f x g x( ) ( )l


0

 

∂
∂

∂
∂







−
∂
∂

∂
∂







−
∂
∂

∂f
x

f
x

g
x

g
x

g
x

g
 


 


1 2

1
1

1

2

2
2

2

1

, , ,l l 22

2

0
∂







−
 x

        ⇒  ( , ) , ( , )2 2 1 2 3 1 01 2 1 2   


x x − ( ) − + −l l

        ⇒  2 3 01 1 2  


x − − −l l  (1)

        2 2 01 1 2  


x − − −l l  (2)

(ii) l i ig x( )

− 0

  
   


l1 1 22 5 0( )x x+ − −  

(3)

  
   


l2 1 23 4 0( )x x+ − −

 
(4)

(iii)  l i ≥ 0

Solving Equation (1),(2),(3),(4) by using 
 x x x x x x x x1 1 1 1 2 2 2 2= =( , , ), ( , , ), 
   l l l l l l l l1 1 1 1 2 2 2 2= =( , , ), ( , , ), 5 4 5 6= ( , , )  and 
4 2 4 5= ( , , ) we get,

 
x0 :

 
x1 0 3

5
4
5

= 



, ,

  
x2 2 11

5
13
5

= 



, ,

  
l1

4
5

2
5

2
5

= − − −



, ,

  
l2

12
5

12
5

14
5

= 



, ,

Fuzzy optimal value of f (x) is 4 130
25

185
25

, ,



 .

Now ∇ −f x x x( ).( ) 0 0   

                = 0 6
5

8
5

4 22
5

26
5

, , , , ,















˙ x x x y y y, , , ,− −



 − − −











3
5

4
5

2 11
5

13
5

x x x y y y, , , ,− −



 − − −











3
5

4
5

2 11
5

13
5

               ⇒  ∇ − >f x x x( ).( ) 


0 0 0

               ⇒  x x> 0

               ⇒  f x f x( ) ( )


> 0

So f(x) is Pseudo Convex at x0

As gi(x) are linear, they are fuzzy convex so they are fuzzy 
quasiconvex.
Hence x0 is the compromise minimum optimal value.

Example-3.2:
Minimize  x x3 +
Subject to  x2 2≤  and 


x >0

By using the necessary conditions:

(i)  ∇ + ∇ −f x g x( ) ( ) 


l 0

                     ⇒
∂
∂

−
∂
∂

−
f
x

g
x


 

l 0
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3 1 2 02  


x x+ − −l

 
(5)

(ii)  
 


l g x1 0( ) −

  


x2 2 0− −  (6)

 



l >0  (7)

Solving (5), (6), (7) by using x x x x= ( ), , , l l l l= ( ), ,  
and 4 3 4 6= ( , , ) we get; 

x  = 
3 2 6, ,( )

        

l = 





5
3

13
4

19
2 6

, ,

Now ∇ ⋅ −f x y x( ) ( )  

       ⇒   ( ) , ,3 1 3 2 6 02


x y y y+ − − −( )>       

                 ⇒   ( , , ) , ,10 13 19 3 2 6 0y y y− − −( )>


                 
⇒

  y y y
  
> > >3 2 6, ,

⇒  f y f x( ) ( )


>  for all y  (since f is increasing function)
⇒  f is pseudo convex function
But g (x) is a convex function so it is a quasi convex.
Hence the fuzzy minimum solution exist and that is

3 2 6 3 2 6 4 3 10 7 6
3

, , , , , ,( ) + ( ) = ( )

4. Conclusion
Non convex optimization problems in fuzzy domain have 
been considered. The objective functions are pseudo convex 
and the constraints are quasi convex functions. The decision 
variables are assumed to be fuzzy triangular numbers. The 
class of pseudo and quasi convex functions are more  general 
in nature in comparision with usual convex functions. The 
fuzzy optimal solutions are obtained in a real interval.
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