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Abstract
Under a market framework, the development of optimal offering strategies is crucial for wind power producers to achieve 
maximum profit. In this paper, a two-stage stochastic programming approach is proposed, considering the uncertainties 
on wind power production and electricity market prices. An artificial intelligence model allows generating wind-price 
scenarios. Also, risk management is appropriately addressed. Results from a real-world case study are presented, in order 
to illustrate the proficiency of  the proposed approach. 
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1.  Introduction
Increasing security and environmental of supply con-
cerns as well as technological improvements compose a 
favorable environment for the expansion of generators 
based on Renewable Energy Sources (RES). However, the 
operation of renewable energy sources such as solar or 
wind plants presents the inconvenience dependence on 
the variability of the solar or wind resource. It makes large 
scale integration of renewable units into power systems 
specially challenging3,9.

Due to the centralized process in several countries, 
renewable energy generators usually will operate under 
electricity market conditions. However, electricity mar-
kets originally have been designed to integrate power 
producers having the ability to control their own indi-
vidual power production at any time, which isn’t the case 
of power producers using non dispatchable RES units. As 
a result, RES power producers may penalize by electricity 
market laws1,5.

Electricity prices show high variability that reflect 
dynamic behavior of the market. Furthermore, the power 
supply that is generated from wind energy is highly 

alternative. Therefore, decision-makers should be prepared 
against electricity market prices and also the uncertainties 
on wind power production2,4,6.

Considering the uncertainties on the electricity market 
prices and wind power production needs stochastic 
programming. Therefore a two-stage stochastic program-
ming approach is suggested, to divide the set of decisions 
intrinsic to the problem into two specified stages.

The mentioned uncertainties were handled through 
time-series models. In this paper, an artificial intelligence 
model is raised to generate wind-price directions.

Also risk management is incorporated in proposed 
stochastic programming approach, by restricting the 
variability of expected profit through the Conditional 
Value-at-Risk (CVaR) methodology7,8.

The suggested approach allows generating the optimal 
offers that must be submitted to the day-ahead markets 
by a wind power producer, due to maximize its expected 
interest considering a given level of risk. 

At the last part of the paper, the experience with the 
implementation of two-stage stochastic programming 
approach on a case study, based on a wind farm in Portugal, 
is reported. 
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2.  Problem Formulation

2.1  Risk Management
Conditional Value-at-Risk (CVaR) shows an appropriate 
approach to address the risk management problem of the 
wind power producer. 

CVaR is the expected profit not exceeding a measure ζ 
that is called Value-at-Risk (VaR) as:

	 CVaR = E ( B | B ≤ ζ )� (1)

Value-at-Risk (VaR) is a measure calculated as the 
maximum profit value so that the possibility of the profit 
being equal or lower than this value is equal or lower than 
1 − α. It is indicated in the following constraint:

	 VaR = max{x | p(B ≤ x ) ≤ 1 − α }� (2)

Usually the value of α is set between 0.90 and 0.99. In 
this paper, α is assumed equal to 0.95.

CVaR mathematically can be shown as equation 5 if:

	 − Bs + ζ − ηs ≤ 0� (3)

and

	 ηs ≥ 0� (4)

	
s

s 1
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=

-
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In constraint (3), ηs is a variable that is zero if the 
scenario s has a profit bigger than ζ. ηs for remaining 
scenarios, is the difference of corresponding profit and ζ. 
The concept of CVaR is shown in Figure 1.

For stochastic problems VaR has more complexity, and 
also it is needed to use binary variables for modeling.

But CVaR calculation can be modeled by the simple 
use of linear constraints and it doesn’t need to use binary 
variables.

2.2  Objective Function
A profit maximization risk constrained decision making 
problem for a wind power producer within the market 
framework can be summarized in equation (6). This 
Formula to be maximized contains the operational costs, 
the CVaR of profit, and expected profit. In this equation, 

S represents set of scenarios and H shows set of hours and 
I is the number of wind turbine.
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psh is the wind farm’s power output in duration h in that 
scenario. λsh indicates forecasted price in duration h in 
related scenario while ρs is equal to possibility of happen-
ing of scenario and Also Pdevsh represents penalization 
for the wind farm’s deviation in duration h. In the next 
part of equation bih ndicates operational cost at duration 
h associated to wind turbine i and gih shows output of 
power for the wind turbine i in duration h and β indicates 
weighting factor to achieve proper tradeoff between risk 
and profit5.

The interest is given by the product of the expected 
electricity market price by the output of power in the 
wind farm has the following equation:

	 Lsh = psh λsh� (7)

Here, the deviations are calculated in absolute value, 
and they come from deficit or excess of energy as illus-
trated in the following equation:

	 devsh = | xh - psh |� (8)

Figure 1.  VaR and CVaR illustration3.
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For producers, the penalty for deviation is corre-
sponding to the product of cost for the shifted power in 
absolute value as comes in the next relation:

	
deg , 0

, 0
P r devsh sh sh shdevsh dev r devsh sh sh sh

Ï
Ô
Ì
Ô
Ó

+l ≥
= -l < � (9)

It is important to note that the expected profit is the 
difference between operational costs, revenue of the wind 
farm and penalty for deviation.

By substituting equation (9) into equation (6) we 
have:
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2.3  Modalities
For a total offset in the relation sh sh shdev d d+ -= - , the 
solution is guaranteed to be achieved with one of these 
variables shd-  or shd+  equal to zero, because shd 1- ≥  and 

shd 1+ £ :

	 sh h sh shp x d d 0- +- + - = � (11)

To make offers for the market, it is needed to satisfy 
the technical limitations of the wind farm. Therefore, 
the optimal value of objective function is determined if 
inequality constraints or simple bounds on variables.

These constraints are shown below:

	 max0 shd P-£ £ � (12)

	 0 sh shd W+£ £ � (13)

In above constraints, Pmax is maximum power installed 
in the wind farm and Wsh is forecasted wind power pro-
duction in period h in scenario s. Constraints (12) and 
(13) force caps on the negative and positive deviations.

Constraint (14) shows that offers must be equal or 
lower than the total power output of the wind turbines 
and indicated as follows:

	 1

I

h ih
i

x g
=

£ Â
� (14)

In Constraint (15), the offers are restricted by the max-
imum power installed on the wind farm and we have:

	 h max0 x P£ £ � (15)

ηs in equation (17) is a variable equal to zero if the sce-
nario s has a profit bigger than ζ. In the other scenarios, 
ηs is equal to the difference of the corresponding profit 
and ζ:

	 ηs ≥ 0� (16)
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2.4  The Objective Function Linearization
The function given in the previous section, is charac-
terized by nonlinearities because of an absolute value. 
Therefore, it is needed to use one mathematical process 
that lets us reformulating into linear problem.

In this section, the problem which has involvement 
with absolute value terms is transformed into one stan-
dard linear programming formulation. At first, it is 
considered that if:

	 maxminX X X£ £ � (18)

	
nx Re � (19)

Then we have the equation (20). In this equation, c 
represents vector of coefficients for linear term and the 
function F (.) is the objective function of decision fac-
tors or variables. The variable x is one set of decisions 
variables.

	 Max | |TF C x x= - � (20)

In constraint (18), Xmax and Xmin are the upper and 
lower restriction vectors on variables. 

Then, absolute valued variables are changed with two 
variables that are strictly positive as indicated in the fol-
lowing equation:

	 | |x X X- += + � (21)

Moreover, variables are substituted by the difference 
of the same two positive variables:

	 X X X+ -= - � (22)

Now, the equivalent linear programming problem is 
computed by the the equation (26) if:
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	 maxminX X X£ £ � (23)

	
+ -= -X X X � (24)

	 0, 0X X+ -≥ ≥ � (25)

	 Max (x x )+ -= - +TF C x � (26)

3.  Proposed Approach

3.1  Scenario Tree
Figure 2 illustrates a scenario tree which is used to repre-
sent the first and second-stage decisions.

Because of tractability for the problem it is better to 
reduce the volume or size of the scenario tree. One tech-
nique for scenario-reduction provides an efficient way to 
select an instance subset of scenarios which covers most 
scenario realizations.

3.2  Two-stage Stochastic Programming 
This two-stage stochastic programming approach can for-
mulate as below:

	 max£ £minb Ax b � (27)

	 [max ]w w w+T T
yC x E q y � (28)

	 0, 0w≥ ≥x y � (29)

	 max
w w w w w£ + £minh T x w y h � (30)

In these equations  bmax and  bmin are the upper and lower 
boundary vectors for the constraints of first-stage, A is the 
coefficients matrix for the first-stage constraints while c is 
the objective function coefficients vector in the first-stage 
for x variables. wT  is the technology matrix for each ω, max

wH  
and min

wH  are the upper and lower boundary vectors for the 
constraints of second-stage and under scenario ω, wW  is the 
recourse matrix and wq  indicates the coefficients vector for 
the variables of second-stage in the linear term.

At the first stage, before the uncertainties indicated by x 
are known, the decision must be taken. The first stage deci-
sion of x just depends on the information available until 
that time. At the second stage, the decision is made about 
the vector y, while the information x is already available. 

Two stages problem means that the decision x is inde-
pendent of the results of the second-stage, and therefore 
the vector x is equal for all events that are possible and 
may happen in the second stage of the problem5.

3.3  Problem of Deterministic Equivalent 
Usually the stochastic model is a complex computational 
problem, therefore it is usual to select the deterministic 
model solution by use of the average of several random 
variables or solving a deterministic problem for each 
scenario5. Previously shown problem is equivalent to the 
so-called deterministic equivalent one that is shown in 
equation (34) if we have:

	 0, 0 For s 1, , S≥ ≥ = …sx y � (31)

	 min maxb Ax b£ £ � (32)

	 max For s 1, , Smin
s s s s sh T x w y h£ + £ = … � (33)

	 ,
1

s

s
T T

x y s S s
s

Max C x q yr
=

+ Â � (34)  

4.  Case Study
Previously discussed stochastic programming approach 
has been applied on a case study, a wind farm located in 
the Viana do Castelo region in Portugal. Total installed 
wind power capacity is 66 Mega Watts, corresponding to 
33 2.0-Mega Watts wind turbines. This model has been 
implemented in MATLAB software and solved using the 
optimization solver package (CPLEX). Numerical test-
ing has been performed on a system with 2 GB RAM and 
2-GHz processor.Figure 2.  Scenario tree5.
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4.1  Input Data
The suggested approach talks about the uncertainty in 
both electricity market prices and wind power production 
using the scenarios in a stochastic problem. The profits 
of a wind power producer are weighing with regard to a 
given risk level. Based on the rules, imbalance penalties are 
imposed to secure better system operation and to prevent  
gaming.

The time horizon used in this case is one day divided 
into 24 hourly periods. This case study is consists of ten 
wind power production scenarios as shown in Figure 3, 
and ten electricity market prices scenarios as shown in 
Figure 4. Although the number of scenarios selected 
arbitrarily, describes the stochastic processes adequately. 
Moreover, ten scenarios for imbalance price ratio are taken 

into account. Therefore, the overall number of scenarios 
that is generated in this optimization problem is S = 1000. 
For each generated scenario the probability is 1/S.

4.2  Results Analysis
A complete comparison of the offering strategies in the 
market for various risk levels using the suggested approach 
is presented thereafter.

The solution of the optimization model for the daily 
market content of the optimal bids. The optimal bids are 
common to the 1000 scenarios (Figure 5).

The two-stage stochastic programming consists of  
(S + 1 + H. (3 × S + I + 1)) variables which are continuous 
and (S + H. ( S + 1) ) constraints. So the size of the prob-
lem depends on the number of scenarios.

Figure 3.  BWind power production scenarios5.

 

 

Figure 4.  Electricity market price scenarios5.

Figure 5.  Optimal hourly bids for different risk levels5.

 

 

Figure 6.  Wind power production, for risk 
level �  =1 and optimal offers to be submitted 
to the future market5 

Figure 6.  Wind power production, for risk level β = 1 and 
optimal offers to be submitted to the future market5.
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Figure 5 illustrates the ability of a wind power pro-
ducer to commerce in the day-ahead market with regard 
to the desired risk level.

To choose one scenario of the problem, it can be seen 
in Figure 6 that the wind farm regulates its production 
to minimize deviations. Nonetheless, in about every hour 
there are small variances between the power output of the 
wind farm and the offers. The deviations that result from 
the difference between the wind power production and 
the offers are illustrated in Figure 7. The positive deviation 
means that the production of wind power was higher than 
the offer submitted to the market, and vice-versa.

Profit standard deviation versus the expected profit is 
shown in Figure 8, it has seven values for β and α = 0.95 
in all examples. 

Figure 8 provides the maximum expected profit that is 
achievable for each risk level or, alternatively, the minimum 
achievable risk level for each expected profit. Such figure 
known as efficient frontier, reveals that for a risk-neutral 
producer (β = 0) expected profit is 18719 € with 1268 € 

Table 1.  Comparison of the increase in profit for 
several risk levels
Risk 
Level

Profit Std. 
Deviation (€)

Expected 
Profit (€)

% Increase
CPU 

Time (s)
1.0 965 18478 – 1.62
0.8 971 18486 0.04 1.05
0.5 978 18519 0.22 0.98
0.3 1001 18599 0.65 0.92
0.2 1050 18675 1.07 0.88
0.1 1108 18702 1.21 0.82
0.0 1268 18719 1.30 0.76

Figure 8.  Expected profit versus profit standard deviation5.

 

Figure 7.  Deviations from difference between the wind 
power production for a risk level β = 1 and the offers5.

 

Figure 7. Deviations from difference between 
the wind power production for a risk level      
�  =1 and the offers5. 

 

 

Figure 9   Histogram of the profits for the risk 
level corresponding to �  = 0 (Catalão et al., 2011) Figure 9.  Histogram of the profits for the risk level 

corresponding to β = 0 (Catalão et al., 2011).

 

Figure 10  Histogram of the profits for the risk level 
corres-ponding to �  = 0.5 (Catalão et al., 2011) Figure 10.  Histogram of the profits for the risk level corres-

ponding to β = 0.5 (Catalão et al., 2011).
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standard deviation. While a risk-averse producer (β = 1) 
expects to reach to a profit of 18478 € with a lower standard 
deviation of 965 €. A numerical comparison of the increase 
in profit for several risk levels illustrated in Table 1.

The maximum profit represents an increase of 1.30% 
with regard to risk level β = 0. Nevertheless, the profit 
standard deviation is higher for β = 0.

Figures 9 and 10 illustrate the histograms of the profits 
for β = 0 and β = 0.5 , respectively.

Analyzing Figures 9 and 10, it can be verified that the 
risk level corresponding to β = 0 implies a higher expected 
profit than for β = 0.5. Nevertheless, β = 0 is riskier than 
β = 0.5 because financial loss can happen under some 
scenarios, thus a risk-averse producer may prefer β = 0.5. 
Therefore, our approach allows selecting best solution 
with regard to the level of desired risk.

5.  Conclusion
In this paper, a two-stage stochastic programming approach 
is proposed to improve risk-constrained offering strategies 
for a wind power producer. A hybrid intelligent approach 
generates wind-price scenarios, and risk management is 
also incorporated by restricting the volatility of expected 
profit through the CVaR methodology. Also a thorough 
comparison of optimal offering strategies in the market for 
various risk levels is presented in this paper. Furthermore, 
the presented results on a realistic case study validate profi-
ciency of the proposed approach, enabling the selection of 
the best solution with regard to the desired risk exposure 
level, while the average calculation time is acceptable.
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