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Abstract
Optimal control of uncertain hybrid systems is a major concern in control engineering. For optimal control of hybrid sys-
tems, there are a variety of direct methods, including parametric control and state-based parametric control. A reason that 
indirect methods are less used for optimal control of hybrid systems is difficulty in working with it and its primary valu-
ing. The present study develops a new numerical method for optimal control of hybrid systems which decreases special 
restrictions of optimal control functions of hybrid systems per provided solution by a Bellman inequality. The obtained 
results show that an optimal control problem can be easily solved by converting it to an optimization problem. In addition, 
the used method obtained more accurate numerical value of the performance index. The results showed that the proposed 
method leads to greater convergence of the algorithm used in optimal control problems. The efficiency and performance 
of the proposed method was tested by an application example. 
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1.  Introduction 
Optimal control of hybrid systems plays a key role in many 
applications, including economics, finance and engineer-
ing. The purpose of this category of controls is to minimize 
cost or maximize revenue. This goal can be achieved by 
finding an optimal case for closed loop system or in some 
cases open-loop systems. Direct and indirect methods 
are two main ways to resolve optimal control problems. 
In indirect method, the problem changes to the other 
problem before solving and it is classified into Bellman 
planning and Pontryagin maximizing principle1–4. 

Hybrid systems include systems which are the result 
of interactions between discrete and continuous dynami-
cal systems. The study of such systems has been further 
accelerated in recent years. In most cases, these systems 
can be described and modelled by a discrete and continu-
ous system in a certain framework considering its primary 
objective5–7. 

One of the main reasons of recent interest in these sys-
tems is a combination of different mathematical models 

and their simple simulation. Control systems generally 
depend on their operating range of application, including 
switching between multiple modes. In recent years, it has 
been tried to study and review various aspects of hybrid 
systems8. 

The system stability has been one of the hottest topics 
in applied research in the last decade. Stability and optimal 
control of hybrid systems are not exempt from this rule 
and great deal of research has been done on it. A number 
of studies examined the stability of discrete systems by 
relevant methods and others examined continuous sys-
tems for hybrid systems9. Single-stage and multi-stage 
hybrid systems are important for optimal control. The 
two systems differ in the amount and complexity of the 
application10,11. 

The present study develops a new numerical method 
for optimal control of a class of hybrid systems by dynamic 
programming and optimizing properties. Bellman’s 
inequality used in this study leads to decreased restric-
tions special for optimal control functions of hybrid 
systems per developed solutions and optimal costs under 
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linear planning conditions. Considering the studied 
problem and uncertainties of multi-stage hybrid systems, 
the present study will use single-stage systems to develop 
a new numerical method for optimal control of hybrid 
systems.

Stochastic Hybrid Systems are an important class of 
hybrid systems including models in which the behav-
ioural variations around the impulse response are related 
to their stochastically systemic behaviour. For analysis of 
these systems, which are commonly observed in response 
to unwanted mutations, general approximates of Markov 
decision processes are used. The selection process is based 
on a mathematical model to model decision-making 
function in situations where the outputs are random but 
somewhat under control; i.e. they have variations which 
are not controllable around a specific function and they 
can be more effective by a dynamic programming. In 
addition, the desired approximation can be achieved by 
Markov function discretization, especially for systems 
which are not directly observable or controllable, if needed. 
Using this approximation, middle and the covariance are 
preserved; this causes that the considered approximation 
does not trigger error, except in the acceptable range. To 
approximate boundary conditions of these systems, their 
dynamic mode around the minimum and maximum lim-
its is approximated by random changes. To determine 
the general behaviour and stability of these systems, con-
ventional method of discretization, which is the basic 
method for solving optimal control problems, is used. It 
is noteworthy that these approximations and thus accept-
ability of the errors triggered while random discretization 
and approximation are determined by conditions of the 

system such as the required accuracy and sensitivity of 
the examined unit12,13. 

Production and reproduction hybrid systems take 
advantage of optimal control. In modeling and planning 
of production units, cost and profit can be approached 
to optimal by dynamic planning. Considering the fact 
that production cost varies in high and low quality units, 
optimal can be achieved using optimal control by extract-
ing cost function related to the process and independent 
examination of the cost and profit14.

In systems which are conditionally stable and may be 
unstable for some initial conditions or inputs, system can 
be stable for all scenarios using a feedback. If the system  
is time-invariant, the key problem is to determine the terms 
and amounts required for system stability; in most cases, 
this can be achieved only by approximations. Therefore, the 
optimal boundary conditions can be achieved by optimal 
control and the best conditions15. In problems of non-linear 
systems, for example, the system is linearized by control-
ling variables and possible paths. Due to the fact that the 
system is not ideal and particularly its non-linear relations, 
divergence can be avoided by approximations derived from 
optimal control methods and using polynomials16.

1.1 � Framework of Single-stage  
Hybrid Systems 

Figure 1 shows a single-stage hybrid system. A sequence 
of N successive operations allocated from an external 
source are inserted for processing in defined times 0 ≤ a1  

≤ … ≤ an. At this stage, the various activities which need to 
be processed by the system are denoted by Ci, i = 1, ... N.  

Figure 1.  Representation of a single-stage hybrid system5.
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Activities are processed as the “FIRST COME-FIRST 
SERVED” (FCFS). Processing time is denoted by S(gi) as 
a function of the control variable ui. In general, control 
of different times of processing is a function of process-
ing time Si. For limited constant controls during a certain 
activity, it is enough to evaluate that processing times Si 
are not negative17–19. For example: S(gi) ≥ 0.

Time-driven dynamic: an activity Ci in time x0 in 
a physical state ℵi is defined as a time-driven dynamic, 
according to (1): 

	 Z Z Zi i( ) ( , ), ( ),t u g t xi i i= =¿0 � (1)

Event-driven dynamic: completion time of an activity 
is denoted by xi. In addition, it will be formulated by the 
following standard relation.

	 x S g i Nii i ix a= + =-max( , ) ( ), ,1 1… � (2)

It should be noted that the choice of control variable gi 
to adjust normal and uniform hybrid system is influenced 
the physical state Zi and temporal state xi. For the single-
stage hybrid system defined by (1) and (2), the purpose of 
optimal control is to select a control sequence {g1, ..., gN} 
to minimize the objective function J as defined below. 

	 J g xi i
i

N

= +
=
Â{ ( ) ( )}q j

1

� (3)

2.  Formulation
Set (4) is considered as a hybrid system; so that, 
x t X Rn( ) Œ Ã  includes the state vector, and u t Ru

m( ) Œ ÃW
contains a continuous input signal. 
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In this system, m m( )t ŒW  is discussed as a discrete 
input which allows the system to select different modes 
q t Q N( ) , , ...,Œ = { }1 2 . In this set, q t( )-  represents sym-
metric q t( ) in the time axis. With regard to relationships, 
only when the condition shown in Equation (5) is satis-
fied, the state q can be shifted to state r. It should be noted 
that time argument is eliminated from the sequence in 
order to increase readability and clarity. 

	 x S Xq rŒ Õ, � (5)

The main problem of optimal control is minimization 
of the cost function, as shown in (6). 

	 J x q l x u dt s x t q t q tq k k k
k

M

t

t f

( , ) ( , ) ( ( ), ( ), ( ))0 0
1

0

= + - +

=
ÂÚ � (6)

Our problem is to shift a system from an initial state 
( , )x q0 0  in time t0 to a final state ( , )x qf f  in time t f  in 
which M is the number of steps for shifting a system from 
an initial state to a final state under the considered condi-
tions, as shown in (7):

	 t t t t tM f0 1 2< < < < <... � (7)

where, s q r t( , , ) > 0 is the corresponding cost for shifting 
system from discrete state q to state r. It is noteworthy 
that, s( )◊ > 0  leads to elimination of infinite steps for shift-
ing from a discrete state q to a discrete state r in a fully 
certain and assured form.

The framework developed in this paper changes 
the number of continuous states based on discrete 
states according to x t f x t u tq q t q q( ) ( ( ), ( ))( )=  in which 

x t X R u t Rq q
n q

q u
m q

q
( ) , ( )( ) ( )Œ Ã Œ ÃW .

2.1 � Constraints Required for Cost 
Optimization

To avoid divergence of the final solution, it is necessary 
to set out the basic constraints to be imposed on the cost 
function. These constraints cause limitations on the path 
to reach optimal solutions of the cost function. Thus, the 
following conditions can be applied on the functions and 
inputs used in the optimization problem. 

First condition: Continuous input function u(t) is 
strictly ascending/descending, continuous and differen-
tiable; for all values, we have (8): 

	 u t( ) < • � (8)

Second condition: Discrete input function m( )t  is 
strictly ascending/descending, continuous and differen-
tiable; its minimum value is obtained at a finite value. 

Third condition: For cost functions and control func-
tions, (9) is true: 

	 0 £
∂

∂
+

V x
x

f x u l x uq
q q

( )
( , ) ( , ) � (9)

Three conditions stated above are requirements to 
meet basic physical needs of hybrid systems. In addition 
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to the conditions listed above, there are a number of 
remarks in order to achieve the most optimal scenario: 

Remark 1: With regard to the relations of (10)  
and (11): 

	 x x jhe khejk f= + 1 2� (10)
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jk i= + + £ £{ : }a a a1 1 2 2 0 1 � (11)
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Assuming that the problem addressed in this paper 
can be developed, (11) there will be no change consider-
ing N shift instead of M shifts during ( , )t t f0  in which  
N = M + d as well as d which is a positive integer, except 
the change in the number of states from N to M. 

Remark 2: in some problems, some subsystems are 
required to be added to the main body of the problem  
to reduce the complexity of the system. In this case, 
outputs related to this subsystem can be calculated inde-
pendently, without consideration of the main body by 

initial conditions. As a result, the proposed method can be 
easily extended to any finite number of shifts (AND/OR). 

Remark 3: in some problems, the number of restric-
tions of the solutions decreases due to the initial conditions 
of the problem. This reduces the time required for cal-
culation of the optimal solution and thus cost function. 
Therefore, the minimum value can be easily obtained.

3. A Practical Example 
To present the performance of the method suggested for 
optimal control of hybrid systems, a practical example is 
developed and simulated.

Example 1: Let us consider the following system 

	

¢ =

¢ = = £

Ï
Ì
Ô

ÓÔ

x z

z L z u k uk ( ) ; , ; | |1 2 1 � (12)

where, Lk(z) is represented in Figure 2. This system indi-
cates a factory with three different production lines which 
are totally programmed for a similar activity and act in a 
parallel form.

As shown in Figure 2, values of these functions at 
various activity periods experience different changes. 
However, function inputs are the same homogenous 
except for the initial and end points of activity points. For 
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Figure 2.  Representation of inputs to hybrid systems.
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optimality and optimal control of hybrid systems, values 
of input functions need to be similar. This similarity 
results from optimal control of hybrid systems. Figure 3 
shows optimality and maximized performance of hybrid 
in heterogeneous activity periods. 

As Figures 3 and 4 show, optimal control of inputs of a 
hybrid heterogeneous system can provide a more accurate 
numerical value to reach maximum yield and minimum 
cost resulting from homogeneous and heterogeneous 
activities of a hybrid system. Figure 3 shows that optimal 
control of inputs considerably increases optimality and 
performance of hybrid systems in heterogeneous activity 
periods. This will reduce cost of parallel activities.

4.  Discussion 
Optimal control of hybrid-dynamic systems is a relatively 
new discussion which determines inputs of a dynamic 
system for optimization (minimization and maximi-
zation) of performance specified in a system to meet 
requirements and limitations imposed on the studied 
system. Because of many complex applications of hybrid 
systems, optimal control problems are often formulated 
and solved by numerical methods. Numerical methods to 
solve optimization problems dates to Bellman’s work, since 

application of numerical discussions in solving optimal 
control, many complexities have been triggered in opti-
mal control problems and their applications; in addition, 
numerical solutions of these problems have considerably 
changes, which both add to accuracy of solutions and 
extend their application in different problems.

Numerical methods for solving optimal control 
problems can be divided into two main classes: 1) direct 
methods, 2) indirect methods. A direct numerical method 
calculates the main variables to determine the first order 
optimality conditions of the original optimal control 
problem. The indirect method solves multiple and local 
boundary conditions to determine the most optimal path 
to solve the optimal control problem. Then, it is discussed 
that whether the determined path leads to minimization/
maximization of the optimal control problem.

To evaluate the efficiency of production units using 
multidimensional dynamic programming and Bellman 
inequality, the present study tried to solve an optimal con-
trol problem for a class of hybrid systems. Observations 
obtained from these inequalities in the numerical solution 
indicate its good results compared with other numerical 
methods. The present study also showed that direct and 
indirect numerical hybrid methods lead to more accurate 
results than using only one method.
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Figure 3.  Representation of optimality and maximized performance of the hybrid systems in heterogeneous activity 
periods.
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Figure 4.  Numerical value of the hybrid system performance.

5.  Conclusion 
Hybrid systems are a combination of discrete and contin-
uous systems. The present study used a developed model 
of Bellman inequality to calculate optimal cost function 
and its application in a linear planning and discretization. 
Calculations show that the techniques used for optimal 
control need to be both consistent with theoretic opti-
mal control and satisfying the calculating conditions. 
The results showed that an optimal control problem 
can be solved easily by changing it into an optimization 
problem. The present study focused on the continuous 
part of a hybrid system and avoided accurate examination 
of the discrete part which itself consists of several cases. 
The applied method obtained more precise numerical 
value of the performance index. The results showed that 
the proposed method leads to greater convergence of the 
algorithm used in optimal control problems. 

Considering the used example, when values of the input 
functions to hybrid systems are in one range (with and with-
out normalization), the considered algorithm leads to the 
best (optimal) case. Variations of the input functions and as 
a result their corresponding outputs show that output will 
be symmetric in cases in which the input is relatively sym-
metric in its relevant range. When this symmetry is closer 
to ideal, the obtained results will approach to the optimal 
case. The diagram of numerical value of the performance 

index in hybrid systems shows that its variations is less in 
points related to the end values where the diagram is flat-
ter; this indicates system stability per value.
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