
Abstract
Security of data stored inside storage devices is becoming one of the main issues in computer security now. It is known
that the most efficient techniques to protect storage devices are using cryptography. Developing newer and more secure
encryption algorithms and modes of operation might be critically important to protect these devices since conventional
disk encryption algorithms, such as CBC mode, have shown serious security flaws. In this paper, the IEEE XTS encryption
mode of operation for storage encryption (P1619 standard) has been implemented using parallel design. A performance
comparison between the sequential and parallel algorithms of XTS mode is presented here. Parallel overheads that
prevented from achieving perfect linear speedup are measured and minimized. The parallel XTS algorithm has shown a
speedup of 1.80, with 90% efficiency, faster than the sequential algorithm. In these simulations, AES is used as encryption
algorithm with 256-bit encryption key.

*Author for correspondence

Indian Journal of Science and Technology, Vol 7(11), 1813–1819, November 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Implementation of a Parallel XTS
Encryption Mode of Operation

Mohammad Ahmed Alomari1*, Khairulmizam Samsudin1 and Abdul Rahman Ramli2

1Computer Systems Research Group, Faculty of Engineering, Universiti Putra Malaysia,
43400 Serdang, Malaysia, m.alomari@ieee.org, kmbs@eng.upm.edu.my

2Intelligent Systems and Robotics Lab, Universiti Putra Malaysia,
43400 Serdang, Malaysia, arr@eng.upm.edu.my

1. Introduction

Data security is an essential part of computer security
whether it is data in transit (transmitted data through
networks) or data at rest (stored data in storage devices).
The importance of securing storage devices has grown
rapidly in the recent years. These devices, ranging from
portable storage devices (PSDs) to personal digital
assistances (PDAs) and laptops, are subjected to theft
or loss due to their small size. Disclosure of data by
unauthorized people may lead to huge organizational
loss in both governmental and private sectors. An
efficient way to secure storage devices is through
encryption techniques. Cryptography is known to be a
mathematically intensive operation which may affect the

speed of any system. The performance and security of
cryptography depends mainly on encryption algorithm
and mode of operation used during encryption process.
An effective way to enhance the performance of crypto
operations is through parallelism.

In an attempt to introduce more secure standards for
encryption, the advanced encryption standard (AES) has
been chosen as a secure encryption algorithm by National
Institute of Science and Technology (NIST)1. Additionally,
IEEE institute has launched SISWG (Security In Storage
Working Group) task force which developed a standard
called P1619 standard2. This standard has introduced an
encryption mode of operation named XTS (XEX encryp-
tion mode with tweak and ciphertext stealing) so that it
can be used as alternative to the current insecure modes of

Keywords: XTS Mode, Disk Encryption, Encryption Modes, Parallel Processing

Implementation of a Parallel XTS Encryption Mode of Operation

Indian Journal of Science and TechnologyVol 7 (11) | November 2014 | www.indjst.org1814

operations such as CBC and ECB. XTS mode is developed
to be used for encryption of storage devices, specifically
disk drives.

An important feature in XTS mode is that it has a
complete support to parallelism in its structure, which
is a feature not available in the current storage encryp-
tion modes (such as CBC)3. On the other hand, XTS
mode has been criticized from different perspectives
which introduced a great need for further investigation
and experiments on this new mode. One important point
against XTS mode is that it is slower in performance than
CBC mode due to slightly increase in its complexity to
ensure security4.

This paper implements the XTS encryption mode of
operation in a parallel design which efficiently enhances
the performance of the mode. The performance of both
sequential and proposed parallel XTS algorithms has
been compared. Additionally, the parallel speedup is
measured including the parallel overheads that affect
the maximum speedup. A system with a dual-core pro-
cessor is used as a parallel environment to simulate the
experiments. To enable parallel operations, OpenMP
specification has been used as an API interface for com-
munication between processors. Overheads in parallel
XTS algorithms are measured, using OmpP5 profiling
tool, and then minimized to improve speedup.

This simulation work has been performed in a Linux
environment using a hardware oriented tools such as C
language, GCC compiler, and OpenMP API which may
allow the simulations code to be implemented in hard-
ware such as a disk controller or FPGA.

The rest of this paper is structured as follows. In sec-
tion 2, details of XTS mode structure will be explored.
Section 3 will introduce OpenMP specification as a paral-
lel API. The details of implementations in this work will
be explained in section 4. Section 5 provides analysis of
the parallel overheads that prevent from achieving the
maximum speedup. Finally, the results and conclusion
are presented in section 6 and 7 respectively.

2. XTS Encryption Mode
For several decades, the most common mode of opera-
tion used for disk encryption was cbc mode, and it is still
continued to be used until now. The inherent features in
cbc mode have driven the cryptography community to
search for more secure and higher performance alterna-
tives. IEEE was one of the leading institutes to launch the

project p1619 siswg in order to find alternatives for cbc,
focusing on the protection of data in storage devices. This
project is mainly targeted toward narrow-block (typically
128-bit) encryption.

In its early drafts, SISWG group has proposed LRW
mode6 as the most promising mode in order to standard-
ize it for narrow-block storage encryption. Due to security
flaws appeared in LRW mode, this group has moved to
develop a new mode of operation called XTS. In Dec
2007, SISWG group has announced the XTS-AES P1619
(XTS mode with AES cipher) as a standard for data pro-
tection on narrow-block storage devices. XTS-AES was
approved by NIST in 2010 as a mode of operation under
FIPS 140-2 7, 8. This standard provides an architecture for
cryptographic protection of data on block-oriented stor-
age devices2.

XTS can operate in parallel, allowing scalability in
today’s environment. This is not true for other modes
of operation like CBC, OFB and CFB. In today’s world
of multiple core processors and low cost programmable
hardware (such as FPGA), it is increasingly important
that a designer be able to increase performance by instan-
tiating multiple instances of an encryption primitive
instead of increasing the clock rate of an existing encryp-
tion primitive9. XTS can be efficiently implemented in
hardware with a slightly more complexity as compared to
CBC10-12.

Finally, XTS is known to be slower in speed than other
modes such as CBC due to its more complex structure
(such as two XOR operations, Galois multiplication, and
two keys). This complexity and slow speed might prevent
XTS to be widely adopted when it is compared to other
conventional modes.

2.1 XTS Structure
XTS is a tweakable mode that is based on the Rogaway
XEX13 mode of operation with CipherText Stealing (CTS)
feature. It is slower than CBC due to additionally more
mathematical operations (such as XORing and GF multi-
plication). This mode XORs the plaintext before and after
encryption process (Xor Encrypt Xor) with the tweak
value as shown in Figure 1. It uses two keys instead of one
key as compared to XEX mode. These two keys are com-
bined to construct the XTS key (i.e. Key = Key1 | Key2).

The main encryption algorithm to be used with XTS
mode is AES algorithm. As explained in the P1619 stan-
dard2, XTS is a tweakable block cipher that acts on data
units of 128 bits or more and uses the AES block cipher as

Mohammad Ahmed Alomari, Khairulmizam Samsudin and Abdul Rahman Ramli

Indian Journal of Science and Technology 1815Vol 7 (11) | November 2014 | www.indjst.org

a subroutine. The key material for XTS consists of a data
encryption key (used by the AES block cipher) as well as
a tweak key that is used to incorporate the logical posi-
tion (for example, inside the disk) of the data block into
the encryption operation. As shown in Figure 1, the XTS-
AES encryption procedure for a single 128-bit block can
be represented by the following equation2:

C ← XTS-AES-Enc(Key, P, i, j)

Where:
Key The 256 or 512 bit XTS-AES key
P Block of 128-bits of plaintext
i The value of the 128-bit tweak
j Sequential no. of the 128-bit block inside the

data unit
C Block of 128-bits of ciphertext
Figure 1 shows the encryption process of a single

block of data. As shown in figure, the value of the 128-bit
tweak i is encrypted using AES algorithm and the encryp-
tion key Key2. The result is multiplied (in Galois Field
multiplication) with the j-th power of α (αj) to produce
T where α is a primitive element of GF. The plaintext P is
encrypted using AES algorithm and encryption key Key1.
Note that the plaintext P is XORed with the value T before
and after this encryption process so that it can produce
the final ciphertext C.

2.2 CipherText Stealing
Ciphertext Stealing (CTS) is a method used in modes
of operations to deal with messages which can not be

divided into a multiple of the block size (e.g. 128 bit for
AES). The benefit of CTS is to prevent any expansion of
the ciphertext, at a cost of slightly increase in complexity.
For XTS, this is an important feature since it makes the
output data (ciphertext) of this mode to be of same size
as input data (plaintext) which is an important constraint
for disk encryption14.

Ciphertext Stealing in XTS is accomplished by pro-
cessing the last two blocks of a message in a different way.
If a message P with m number of blocks is to be encrypted
and the last block is incomplete, then the last two blocks
Pm-1 and Pm will be encrypted and transferred in a reor-
dered sequence. The encryption of the last two blocks is
accomplished by padding the last block Pm (which is pos-
sibly incomplete) with the high order bits from the second
last ciphertext block (ciphertext of Pm-1). By stealing these
high order bits, the last partial block Pm will be completed
and encrypted normally. Then the second last ciphertext
block (ciphertext of Pm-1) is truncated to the length of the
final plaintext block Pm. Finally, the ciphertext of the last
two blocks will be reordered and transferred7.

3.  OpenMP Specification
OpenMP stands for Open Multi-Processing and can be
defined as a multi-platform application programming
interface (API) that is designed to be used for shared-
memory parallel programming. It is a portable, scalable
model that gives shared-memory parallel programmers
a simple and flexible interface for developing paral-
lel applications for platforms ranging from desktops to
supercomputers15.

The OpenMP API uses the fork-join model of parallel
execution which is based mainly on multithreading tech-
nology. In this model, an OpenMP program begins as
a single thread of execution called the initial thread (or
master thread). The initial thread executes sequentially
until a parallel code construct is met. When initial thread
encounters a parallel code, the thread creates a team of
threads and becomes itself the master of the new team,
as shown in Figure 2. All members of the new team exe-
cute the code inside the parallel region. Only the master
thread continues execution of user code beyond the end
of the parallel region. Any number of parallel regions can
be specified in a single program15.

Generally, parallel systems need to provide proper
profiling tools to determine where the program spends
most of its execution time and what resources are being

Figure 1. XTS-AES encryption process.

Implementation of a Parallel XTS Encryption Mode of Operation

Indian Journal of Science and TechnologyVol 7 (11) | November 2014 | www.indjst.org1816

specification has been used to enable parallel operations
and coordinate processors work. OmpP profiling tool is
used to measure different parallel overheads so that the
time-consuming regions can be minimized.

The simulations of both sequential and parallel XTS
algorithms have been conducted using a group of six data
samples with different sizes (128KB, 512KB, 1MB, 4MB,
8MB, and 16MB). Linux operating system is used as a
platform for simulations. The presented values in results
are the average of 10 repeated runs of encrypting each
data sample. Execution time is measured in milliseconds
accuracy using Linux time command19.

4.2 Parallelization Process
The parallelization of XTS mode depends mainly on an
important feature of this mode in which each block of
data can be encrypted independently without any relation
to other blocks. This feature allows the encrypted data to
be divided into different portions in such a way that two
successive blocks of data can be processed concurrently in
two different processing units.

Dividing data into portions, where each portion is
associated to a processor, is a parallelization strategy
called data parallelism since the partition of the data is at
the heart of this approach. This approach has been used
in this work to parallelize XTS encryption mode. On
the other hand, task parallelism strategy is based on the
dividing of program code (instead of data) where each
thread executes a portion of code. Since the parallel XTS-
AES algorithm, in this work, will divide the data blocks
into two almost equal parts, the expected performance
speedup should be twice of the sequential algorithm.
Actually, performance is subjected to different parallel
overhead factors which may prevent from achieving per-
fect linear speedup.

5.  Parallel Overhead Analysis
The parallel overheads in OmpP are divided into four
categories: synchronization, imbalance, limited paral-
lelism, and management overheads where each of them
is caused by specific OpenMP constructs or pragmas.
Synchronization overhead may occur due to threads wait-
ing for each other in barriers or critical sections, whereas
imbalance overhead is caused by improper distribution of
work-load among threads. Forcing some parts of code to
be executed only by a specific thread may cause limited
parallelism overhead. Finally, a management overhead

Figure 2. OpenMP Fork-Join Execution modelordering.

used. Profiling tools are usually based on modules to
record performance-related information and to examine
the results.

OmpP is a profiling tool for OpenMP applications
designed for Unix-like systems. This tool is based on
source code instrumentation by Opari16. OmpP deter-
mines the execution time and number of counts for all
OpenMP constructs, such as parallel regions and criti-
cal sections that are available in executed application.
OmpP consists of a monitoring library that is linked to
an OpenMP application. Upon termination of the target
application, OmpP writes a performance profiling report
to a file that contains timing and counting data of pro-
gram execution17.

Most of the profiling tools collect performance data
based on two approaches: sampling and code instrumen-
tation. In this work, OmpP profiling tool has been used
to debug the parallel code and analyze threads behavior
during execution. This profiling tool implements the code
instrumentation approach to collect data from executed
code5, 18.

4.  Implementation Details

4.1 Implementation Environment
To parallelize XTS, a 2.4GHz Intel® dual-core system with
2GB of RAM has been used to implement the proposed
parallel algorithm. The crypto part of this work has been
implemented using LibTomCrypt encryption library
which contains the AES encryption algorithm (128-bit
block size and 256-bit key) and XTS encryption mode
of operation. As a parallel API interface, OpenMP

Mohammad Ahmed Alomari, Khairulmizam Samsudin and Abdul Rahman Ramli

Indian Journal of Science and Technology 1817Vol 7 (11) | November 2014 | www.indjst.org

might occur due to the time taken to repeatedly create,
start, and stop threads17.

 In this work, to achieve a maximum performance
speedup with the parallel XTS algorithm, a detailed over-
head analysis has been performed using OmpP profiling
tool. This analysis shows that a management overhead,
caused by multiple startup and shutdown (fork-join) of
threads, severely affects the execution time. This manage-
ment overhead occurs due to the repeated creation and
destruction of threads during each read of data. Imbalance
overhead has also been reported in the analysis but with
less severity which made this work to concentrate on
minimizing the management overhead.

Figure 3 illustrates the parallel XTS algorithm when
the parallel overheads severely affect the speedup.
Imbalance and management overheads have limited the
performance of XTS parallel algorithm with average per-
centages of 12% and 33% respectively. This shows that a
total of 45% of the parallel algorithm execution time has
been consumed in processing extra overheads rather than
executing the intended task.

After analyzing and minimizing overheads in the
parallel XTS algorithm, the management overhead has
been reduced through eliminating the frequent startup/
shutdown of threads. On the other hand, the imbalance
overhead, which is caused by improper distribution of
encryption load between threads, still remains as illus-
trated in Figure 4. The final average of management and
imbalance overheads are 0.42% and 12% respectively.
The total overhead of the improved XTS algorithm has

Figure 3. Parallel overheads with respect to XTS algorithm
execution time.

dropped from 45% to 12% which enhanced the speedup
significantly.

6. Results Analysis
The performance of the parallel XTS-AES algorithm has
been compared to the sequential algorithm as illustrated
in Figure 5. For proper comparisons, both algorithms
have been implemented using the same encryption algo-
rithm (i.e. AES) and same data set (which range from
128 KB to 16 MB). Encryption time is measured here in
milliseconds. As expected, Figure 5 shows that the XTS

Figure 4. Parallel overheads with respect to improved
execution time of XTS algorithm.

Figure 5. Performance Comparison of Sequential and
Parallel XTS-AES Algorithms.

Implementation of a Parallel XTS Encryption Mode of Operation

Indian Journal of Science and TechnologyVol 7 (11) | November 2014 | www.indjst.org1818

parallel algorithm, using two cores, demonstrates much
higher performance than the sequential one while pre-
serving XTS properties and security aspects.

Table 1 presents the encryption time for both XTS
implementations. The sequential algorithm takes 291
milliseconds to encrypt 16MB of data, while parallel
algorithm takes only 165 milliseconds. Hence, a parallel
speedup of 1.76 and efficiency of 88% has been achieved.
When calculating the average performance of parallel
algorithm using all data samples, it achieves a parallel
speedup of 1.80 with an efficiency of 90%.

7.   XTS with Other Encryption 
Algorithms

For the completeness of this study, parallel XTS algorithm
has been simulated using encryption algorithms other
than AES. In this section, the parallel XTS is evaluated
using Twofish and RC6 encryption algorithms. Figure 6
and 7 present the performance of both XTS-Twofish and
XTS-RC6 algorithms respectively. Each of these algo-
rithms is compared to its sequential algorithm to depict
the improvement achieved in each case.

XTS-Twofish exhibits a higher speedup which is
almost similar to XTS-AES algorithm. When calculat-
ing the average performance of the parallel XTS-Twofish
algorithm, it achieves a speedup of 1.75 and an efficiency
of 88%. On the other hand, although sequential XTS-RC6
algorithm provides better performance, the parallel
XTS-RC6 produces low speedup as compared to other
parallel XTS algorithms. The parallel XTS-RC6 achieves
a speedup of 1.42 only with efficiency of 71%. This indi-
cates that parallelizing XTS mode is less efficient using
RC6 encryption algorithm, when compared to AES and
Twofish. Although it produced low speedup, the paral-
lel XTS-RC6 algorithm is still the fastest(less execution
time) among all the evaluated algorithms as Figure 8
illustrates.

8.  Conclusion and Future Work
In this paper, the XTS-AES encryption mode of operation
has been successfully implemented in a parallel design
while preserving its security aspects. The performance
of parallel XTS algorithm is measured and compared to
sequential algorithm which shows an efficient speedup of
1.8 due to the use of parallelism. Additionally, the parallel
XTS is also simulated with other encryption algorithms as
Twofish and RC6.

The results of this work demonstrate that it is highly
practical to parallelize XTS-AES which will make
this algorithm more suitable for storage encryption,

Table 1. Encryption Time (In Milliseconds) of
XTS Algorithms
Data Size 128 K 512 K 1 MB 4 MB 8 MB 16 MB
Sequential
XTS

004 010 020 075 147 291

Parallel XTS 002 006 011 042 083 165

Figure 6. Performance Comparison of Sequential and
Parallel XTS-Twofish Algorithms.

Figure 7. Performance Comparison of Sequential and
Parallel XTS-RC6 Algorithms.

Mohammad Ahmed Alomari, Khairulmizam Samsudin and Abdul Rahman Ramli

Indian Journal of Science and Technology 1819Vol 7 (11) | November 2014 | www.indjst.org

 5. Furlinger, K., & Gerndt, M. ompP: A Profiling Tool for
OpenMP. Lecture Notes in Computer Science, 2008; 4315,
15-23.

 6. Liskov, M., Rivest, R., & Wagner, D. Tweakable block
ciphers. Advances in Cryptology – CRYPTO ’02, 2442 of
Lecture Notes in Computer Science, 2002; 31-46.

 7. Ball, M. V., Guyot, C., Hughes, J. P., Martin, L., & Noll, L. C.
The XTS-AES disk encryption algorithm and the security
of ciphertext stealing. Cryptologia 2012; 36(1) 70-79.

 8. Dworkin, M. Recommendation for Block Cipher Mode
of Operation: The XTS-AES Mode for Confidentiality on
Storage Devices, NIST Special Publication 2010; 800-38E.

 9. Ball, M. NIST’s Consideration of XTS-AES as standard-
ized by IEEE Std 1619-2007. , 2008; from http://csrc.nist.
gov/groups/ST/toolkit/BCM/documents/comments/XTS/
XTS_comments-Ball.pdf

10. Storage Solutions by Helion. Accessed December 2, 2012.
from http://www.heliontech.com/storage.htm

11. Ball, M. V. Follow-up to NIST’s Consideration of XTS-AES
as standardized by IEEE Std 1619-2007 (Draft 2). IEEE
SISWG Retrieved March 13, 2011., 2009; from https:// www.
siswg.net/index2.php?option=com_docman&task=doc_
view&gid=166&Itemid=41

12. Ahmed, S., Samsudin, K., Ramli, A. R., & Rokhani, F. Z.
An Effective Storage Encryption Solution. Indian Journal
of Science and Technology, 2013; 6(4), 4384-4389.

13. Rogaway, P. Efficient Instantiations of Tweakable Block
ciphers and Refinements to Modes OCB and PMAC.
Advances in Cryptology – Asiacrypt, 3329 of Lecture Notes
in Computer Science, 2004;16–31.

14. El-Fotouh, M. A., & Diepold, K. (2008). A New Narrow
Block Mode of Operations for Disk Encryption. Paper
presented at the The Fourth International Conference on
Information Assurance and Security.

15. OpenMP. (2005). OpenMP Application Program Interface
documentations. from http://www.openmp.org/mp-docu-
ments/spec25.pdf

16. Mohr, B., Malony, A. D., Shende, S., & Wolf, F. (2001).
Towards a performance tool interface for OpenMP: An
approach based on directive rewriting. In Proceedings of
the Third Workshop on OpenMP (EWOMP’01).

17. Furlinger, K., & Gerndt, M. Analyzing Overheads and
Scalability Characteristics of OpenMP Applications.
Lecture Notes in Computer Science, 2007; 4395, 39-51.

18. Chapman, B., Jost, G., & Pas, R. V. D. (2007). Using
OpenMP: portable shared memory parallel programming:
MIT press.

19. Andresen, R. Monitoring Linux with native tools. In the
30th Annual International Conference of the Computer
Measurement Group, Inc., 2004;1, 345-354.

Figure 8. Performance Comparison of Parallel XTS Using
Different Encryption Algorithms.

specifically disk encryption. With the massive data
encryption operations of storage devices, parallelizing
XTS-AES is an efficient way to enable the built-in disk
encryption without affecting the overall performance.

Additionally, parallelizing XTS- AES can be greatly
promising in the near future with the advent of GPU
(graphics processing unit) computing, especially with
the devices that have limited processing resources such
as mobile devices. GPU computing allows the transfer of
massively parallel encryption operations to be processed
inside the GPU of a mobile device instead of the CPU
which frees the CPU processor for user’s needs and main-
tain a proper performance of the device.

9.  References
 1. NIST. FIPS-197, Announcing the ADVANCED

ENCRYPTION STANDARD (AES). from http://csrc.nist.
gov/publications/fips/fips197/fips-197.pdf 2001

 2. IEEE. IEEE Standard for Cryptographic Protection of Data
on Block-Oriented Storage Devices. c1-32, 2008.

 3. Fruhwirth, C. New Methods in Hard Disk Encryption.
Institute for Computer Languages Theory and Logic Group,
Vienna University of Technology, 2005.

 4. Follow-up comments on NIST’s consideration of XTS-AES
(Draft 3). Retrieved August 01, 2011., from https:// www.
siswg.net/index2.php?option=com_docman&task=doc_
view&gid=169&Itemid=41

