
Abstract
Security of data stored inside storage devices is becoming one of the main issues in computer security now. It is known 
that the most efficient techniques to protect storage devices are using cryptography. Developing newer and more secure 
encryption algorithms and modes of operation might be critically important to protect these devices since conventional 
disk encryption algorithms, such as CBC mode, have shown serious security flaws. In this paper, the IEEE XTS encryption 
mode of operation for storage encryption (P1619 standard) has been implemented using parallel design. A performance 
comparison between the sequential and parallel algorithms of XTS mode is presented here. Parallel overheads that 
prevented from achieving perfect linear speedup are measured and minimized. The parallel XTS algorithm has shown a 
speedup of 1.80, with 90% efficiency, faster than the sequential algorithm. In these simulations, AES is used as encryption 
algorithm with 256-bit encryption key. 
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1. Introduction

Data security is an essential part of computer security 
whether it is data in transit (transmitted data through 
networks) or data at rest (stored data in storage devices). 
The importance of securing storage devices has grown 
rapidly in the recent years. These devices, ranging from 
portable storage devices (PSDs) to personal digital 
assistances (PDAs) and laptops, are subjected to theft 
or loss due to their small size. Disclosure of data by 
unauthorized people may lead to huge organizational 
loss in both governmental and private sectors. An 
efficient way to secure storage devices is through 
encryption techniques. Cryptography is known to be a 
mathematically intensive operation which may affect the 

speed of any system.  The performance and security of 
cryptography depends mainly on encryption algorithm 
and mode of operation used during encryption process. 
An effective way to enhance the performance of crypto 
operations is through parallelism. 

In an attempt to introduce more secure standards for 
encryption, the advanced encryption standard (AES) has 
been chosen as a secure encryption algorithm by National 
Institute of Science and Technology (NIST)1. Additionally, 
IEEE institute has launched SISWG (Security In Storage 
Working Group) task force which developed a standard 
called P1619 standard2. This standard has introduced an 
encryption mode of operation named XTS (XEX encryp-
tion mode with tweak and ciphertext stealing) so that it 
can be used as alternative to the current insecure modes of 
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operations such as CBC and ECB. XTS mode is developed 
to be used for encryption of storage devices, specifically 
disk drives. 

An important feature in XTS mode is that it has a 
complete support to parallelism in its structure, which 
is a feature not available in the current storage encryp-
tion modes (such as CBC)3. On the other hand, XTS 
mode has been criticized from different perspectives 
which introduced a great need for further investigation 
and experiments on this new mode. One important point 
against XTS mode is that it is slower in performance than 
CBC mode due to slightly increase in its complexity to 
ensure security4. 

This paper implements the XTS encryption mode of 
operation in a parallel design which efficiently enhances 
the performance of the mode. The performance of both 
sequential and proposed parallel XTS algorithms has 
been compared. Additionally, the parallel speedup is 
measured including the parallel overheads that affect 
the maximum speedup. A system with a dual-core pro-
cessor is used as a parallel environment to simulate the 
experiments. To enable parallel operations, OpenMP 
specification has been used as an API interface for com-
munication between processors. Overheads in parallel 
XTS algorithms are measured, using OmpP5 profiling 
tool, and then minimized to improve speedup.

This simulation work has been performed in a Linux 
environment using a hardware oriented tools such as C 
language, GCC compiler, and OpenMP API which may 
allow the simulations code to be implemented in hard-
ware such as a disk controller or FPGA.

The rest of this paper is structured as follows. In sec-
tion 2, details of XTS mode structure will be explored. 
Section 3 will introduce OpenMP specification as a paral-
lel API. The details of implementations in this work will 
be explained in section 4. Section 5 provides analysis of 
the parallel overheads that prevent from achieving the 
maximum speedup. Finally, the results and conclusion 
are presented in section 6 and 7 respectively.

2. XTS Encryption Mode
For several decades, the most common mode of opera-
tion used for disk encryption was cbc mode, and it is still 
continued to be used until now. The inherent features in 
cbc mode have driven the cryptography community to 
search for more secure and higher performance alterna-
tives. IEEE was one of the leading institutes to launch the 

project p1619 siswg in order to find alternatives for cbc, 
focusing on the protection of data in storage devices. This 
project is mainly targeted toward narrow-block (typically 
128-bit) encryption.

In its early drafts, SISWG group has proposed LRW 
mode6 as the most promising mode in order to standard-
ize it for narrow-block storage encryption. Due to security 
flaws appeared in LRW mode, this group has moved to 
develop a new mode of operation called XTS. In Dec 
2007, SISWG group has announced the XTS-AES P1619 
(XTS mode with AES cipher) as a standard for data pro-
tection on narrow-block storage devices. XTS-AES was 
approved by NIST in 2010 as a mode of operation under 
FIPS 140-2 7, 8. This standard provides an architecture for 
cryptographic protection of data on block-oriented stor-
age devices2.

XTS can operate in parallel, allowing scalability in 
today’s environment. This is not true for other modes 
of operation like CBC, OFB and CFB. In today’s world 
of multiple core processors and low cost programmable 
hardware (such as FPGA), it is increasingly important 
that a designer be able to increase performance by instan-
tiating multiple instances of an encryption primitive 
instead of increasing the clock rate of an existing encryp-
tion primitive9. XTS can be efficiently implemented in 
hardware with a slightly more complexity as compared to 
CBC10-12.

Finally, XTS is known to be slower in speed than other 
modes such as CBC due to its more complex structure 
(such as two XOR operations, Galois multiplication, and 
two keys). This complexity and slow speed might prevent 
XTS to be widely adopted when it is compared to other 
conventional modes.

2.1 XTS Structure
XTS is a tweakable mode that is based on the Rogaway 
XEX13 mode of operation with CipherText Stealing (CTS) 
feature. It is slower than CBC due to additionally more 
mathematical operations (such as XORing and GF multi-
plication). This mode XORs the plaintext before and after 
encryption process (Xor Encrypt Xor) with the tweak 
value as shown in Figure 1. It uses two keys instead of one 
key as compared to XEX mode. These two keys are com-
bined to construct the XTS key (i.e. Key = Key1 | Key2).

The main encryption algorithm to be used with XTS 
mode is AES algorithm. As explained in the P1619 stan-
dard2, XTS is a tweakable block cipher that acts on data 
units of 128 bits or more and uses the AES block cipher as 



Mohammad Ahmed Alomari, Khairulmizam Samsudin and Abdul Rahman Ramli

Indian Journal of Science and Technology 1815Vol 7 (11) | November 2014 | www.indjst.org

a subroutine. The key material for XTS consists of a data 
encryption key (used by the AES block cipher) as well as 
a tweak key that is used to incorporate the logical posi-
tion (for example, inside the disk) of the data block  into 
the encryption operation. As shown in Figure 1, the XTS-
AES encryption procedure for a single 128-bit block can 
be represented by the following equation2:

C ← XTS-AES-Enc(Key, P, i, j)

Where:
Key The 256 or 512 bit XTS-AES key
P Block of 128-bits of plaintext
i The value of the 128-bit tweak
j  Sequential no. of the 128-bit block inside the 

data unit
C Block of 128-bits of ciphertext
Figure 1 shows the encryption process of a single 

block of data. As shown in figure, the value of the 128-bit 
tweak i is encrypted using AES algorithm and the encryp-
tion key Key2. The result is multiplied (in Galois Field 
multiplication) with the j-th power of α (αj ) to produce 
T where α is a primitive element of GF. The plaintext P is 
encrypted using AES algorithm and encryption key Key1. 
Note that the plaintext P is XORed with the value T before 
and after this encryption process so that it can produce 
the final ciphertext C. 

2.2 CipherText Stealing
Ciphertext Stealing (CTS) is a method used in modes 
of operations to deal with messages which can not be 

divided into a multiple of the block size (e.g. 128 bit for 
AES). The benefit of CTS is to prevent any expansion of 
the ciphertext, at a cost of slightly increase in complexity. 
For XTS, this is an important feature since it makes the 
output data (ciphertext) of this mode to be of same size 
as input data (plaintext) which is an important constraint 
for disk encryption14.

Ciphertext Stealing in XTS is accomplished by pro-
cessing the last two blocks of a message in a different way. 
If a message P with m number of blocks is to be encrypted 
and the last block is incomplete, then the last two blocks 
Pm-1 and Pm will be encrypted and transferred in a reor-
dered sequence. The encryption of the last two blocks is 
accomplished by padding the last block Pm (which is pos-
sibly incomplete) with the high order bits from the second 
last ciphertext block (ciphertext of Pm-1). By stealing these 
high order bits, the last partial block Pm will be completed 
and encrypted normally. Then the second last ciphertext 
block (ciphertext of Pm-1) is truncated to the length of the 
final plaintext block Pm. Finally, the ciphertext of the last 
two blocks will be reordered and transferred7.

3.  OpenMP Specification
OpenMP stands for Open Multi-Processing and can be 
defined as a multi-platform application programming 
interface (API) that is designed to be used for shared-
memory parallel programming. It is a portable, scalable 
model that gives shared-memory parallel programmers 
a simple and flexible interface for developing paral-
lel applications for platforms ranging from  desktops to 
supercomputers15. 

The OpenMP API uses the fork-join model of parallel 
execution which is based mainly on multithreading tech-
nology.  In this model, an OpenMP program begins as 
a single thread of execution called the initial thread (or 
master thread). The initial thread executes sequentially 
until a parallel code construct is met. When initial thread 
encounters a parallel code, the thread creates a team of 
threads and becomes itself the master of the new team, 
as shown in Figure 2. All members of the new team exe-
cute the code inside the parallel region. Only the master 
thread continues execution of user code beyond the end 
of the parallel region. Any number of parallel regions can 
be specified in a single program15.

Generally, parallel systems need to provide proper 
profiling tools to determine where the program spends 
most of its execution time and what resources are being 

Figure 1. XTS-AES encryption process.
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specification has been used to enable parallel operations 
and coordinate processors work. OmpP profiling tool is 
used to measure different parallel overheads so that the 
time-consuming regions can be minimized.

The simulations of both sequential and parallel XTS 
algorithms have been conducted using a group of six data 
samples with different sizes (128KB, 512KB, 1MB, 4MB, 
8MB, and 16MB). Linux operating system is used as a 
platform for simulations. The presented values in results 
are the average of 10 repeated runs of encrypting each 
data sample. Execution time is measured in milliseconds 
accuracy using Linux time command19.

4.2 Parallelization Process
The parallelization of XTS mode depends mainly on an 
important feature of this mode in which each block of 
data can be encrypted independently without any relation 
to other blocks. This feature allows the encrypted data to 
be divided into different portions in such a way that two 
successive blocks of data can be processed concurrently in 
two different processing units. 

Dividing data into portions, where each portion is 
associated to a processor, is a parallelization strategy 
called data parallelism since the partition of the data is at 
the heart of this approach. This approach has been used 
in this work to parallelize XTS encryption mode. On 
the other hand, task parallelism strategy is based on the 
dividing of program code (instead of data) where each 
thread executes a portion of code. Since the parallel XTS-
AES algorithm, in this work, will divide the data blocks 
into two almost equal parts, the expected performance 
speedup should be twice of the sequential algorithm. 
Actually, performance is subjected to different parallel 
overhead factors which may prevent from achieving per-
fect linear speedup. 

5.  Parallel Overhead Analysis
The parallel overheads in OmpP are divided into four 
categories: synchronization, imbalance, limited paral-
lelism, and management overheads where each of them 
is caused by specific OpenMP constructs or pragmas. 
Synchronization overhead may occur due to threads wait-
ing for each other in barriers or critical sections, whereas 
imbalance overhead is caused by improper distribution of 
work-load among threads. Forcing some parts of code to 
be executed only by a specific thread may cause limited 
parallelism overhead. Finally, a management overhead 

Figure 2. OpenMP Fork-Join Execution modelordering.

used. Profiling tools are usually based on modules to 
record performance-related information and to examine 
the results. 

OmpP is a profiling tool for OpenMP applications 
designed for Unix-like systems. This tool is based on 
source code instrumentation by Opari16. OmpP deter-
mines the execution time and number of counts for all 
OpenMP constructs, such as parallel regions and criti-
cal sections that are available in executed application. 
OmpP consists of a monitoring library that is linked to 
an OpenMP application. Upon termination of the target 
application, OmpP writes a performance profiling report 
to a file that contains timing and counting data of pro-
gram execution17.

Most of the profiling tools collect performance data 
based on two approaches: sampling and code instrumen-
tation. In this work, OmpP profiling tool has been used 
to debug the parallel code and analyze threads behavior 
during execution. This profiling tool implements the code 
instrumentation approach to collect data from executed 
code5, 18.

4.  Implementation Details

4.1 Implementation Environment
To parallelize XTS, a 2.4GHz Intel® dual-core system with 
2GB of RAM has been used to implement the proposed 
parallel algorithm. The crypto part of this work has been 
implemented using LibTomCrypt encryption library 
which contains the AES encryption algorithm (128-bit 
block size and 256-bit key) and XTS encryption mode 
of operation. As a parallel API interface, OpenMP 
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might occur due to the time taken to repeatedly create, 
start, and stop threads17.

 In this work, to achieve a maximum performance 
speedup with the parallel XTS algorithm, a detailed over-
head analysis has been performed using OmpP profiling 
tool. This analysis shows that a management overhead, 
caused by multiple startup and shutdown (fork-join) of 
threads, severely affects the execution time. This manage-
ment overhead occurs due to the repeated creation and 
destruction of threads during each read of data. Imbalance 
overhead has also been reported in the analysis but with 
less severity which made this work to concentrate on 
minimizing the management overhead.

Figure 3 illustrates the parallel XTS algorithm when 
the parallel overheads severely affect the speedup. 
Imbalance and management overheads have limited the 
performance of XTS parallel algorithm with average per-
centages of 12% and 33% respectively. This shows that a 
total of 45% of the parallel algorithm execution time has 
been consumed in processing extra overheads rather than 
executing the intended task.  

After analyzing and minimizing overheads in the 
parallel XTS algorithm, the management overhead has 
been reduced through eliminating the frequent startup/
shutdown of threads. On the other hand, the imbalance 
overhead, which is caused by improper distribution of 
encryption load between threads, still remains as illus-
trated in Figure 4. The final average of management and 
imbalance overheads are 0.42% and 12% respectively. 
The total overhead of the improved XTS algorithm has 

Figure 3. Parallel overheads with respect to XTS algorithm 
execution time.

dropped from 45% to 12% which enhanced the speedup 
significantly.

6. Results Analysis
The performance of the parallel XTS-AES algorithm has 
been compared to the sequential algorithm as illustrated 
in Figure 5. For proper comparisons, both algorithms 
have been implemented using the same encryption algo-
rithm (i.e. AES) and same data set (which range from 
128 KB to 16 MB). Encryption time is measured here in 
milliseconds. As expected, Figure 5 shows that the XTS 

Figure 4. Parallel overheads with respect to improved 
execution time of XTS algorithm.

Figure 5. Performance Comparison of Sequential and 
Parallel XTS-AES Algorithms.
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parallel algorithm, using two cores, demonstrates much 
higher performance than the sequential one while pre-
serving XTS properties and security aspects.  

Table 1 presents the encryption time for both XTS 
implementations. The sequential algorithm takes 291 
milliseconds to encrypt 16MB of data, while parallel 
algorithm takes only 165 milliseconds. Hence, a parallel 
speedup of 1.76 and efficiency of 88% has been achieved. 
When calculating the average performance of parallel 
algorithm using all data samples, it achieves a parallel 
speedup of 1.80 with an efficiency of 90%.

7.   XTS with Other Encryption 
Algorithms

For the completeness of this study, parallel XTS algorithm 
has been simulated using encryption algorithms other 
than AES. In this section, the parallel XTS is evaluated 
using Twofish and RC6 encryption algorithms. Figure 6 
and 7 present the performance of both XTS-Twofish and 
XTS-RC6 algorithms respectively. Each of these algo-
rithms is compared to its sequential algorithm to depict 
the improvement achieved in each case.

XTS-Twofish exhibits a higher speedup which is 
almost similar to XTS-AES algorithm. When calculat-
ing the average performance of the parallel XTS-Twofish 
algorithm, it achieves a speedup of 1.75 and an efficiency 
of 88%. On the other hand, although sequential XTS-RC6 
algorithm provides better performance, the parallel 
XTS-RC6 produces low speedup as compared to other 
parallel XTS algorithms. The parallel XTS-RC6 achieves 
a speedup of 1.42 only with efficiency of 71%. This indi-
cates that parallelizing XTS mode is less efficient using 
RC6 encryption algorithm, when compared to AES and 
Twofish. Although it produced low speedup, the paral-
lel XTS-RC6 algorithm is still the fastest(less execution  
time) among  all the evaluated  algorithms  as Figure 8 
illustrates.

8.  Conclusion and Future Work
In this paper, the XTS-AES encryption mode of operation 
has been successfully implemented in a parallel design 
while preserving its security aspects. The performance 
of parallel XTS algorithm is measured and compared to 
sequential algorithm which shows an efficient speedup of 
1.8 due to the use of parallelism. Additionally, the parallel 
XTS is also simulated with other encryption algorithms as 
Twofish and RC6. 

The results of this work demonstrate that it is highly 
practical to parallelize XTS-AES which will make 
this algorithm more suitable for storage encryption, 

Table 1. Encryption Time (In Milliseconds) of 
XTS Algorithms
Data Size 128 K 512 K 1 MB 4 MB 8 MB 16 MB
Sequential 
XTS

004 010 020 075 147 291

Parallel XTS 002 006 011 042 083 165

Figure 6. Performance Comparison of Sequential and 
Parallel XTS-Twofish Algorithms.

Figure 7. Performance Comparison of Sequential and 
Parallel XTS-RC6 Algorithms.
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Figure 8. Performance Comparison of Parallel XTS Using 
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specifically disk encryption. With the massive data 
encryption operations of storage devices, parallelizing 
XTS-AES is an efficient way to enable the built-in disk 
encryption without affecting the overall performance. 

Additionally, parallelizing XTS-   AES can be greatly 
promising in the near future with the advent of GPU 
(graphics processing unit) computing, especially with 
the devices that have limited processing resources such 
as mobile devices. GPU computing allows the transfer of 
massively parallel encryption operations to be processed 
inside the GPU of a mobile device instead of the CPU 
which frees the CPU processor for user’s needs and main-
tain a proper performance of the device.
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