
Abstract
Objectives: Modeling of physical systems results in complex higher-order representation. It’s somewhat strenuous to 
process out with these intricate systems, in such conditions these large scale systems are approximated by relegated order 
model. Methods/Statistical Analysis: A system with bounded parameters but uncertain and having constant coefficients 
is termed as an interval system. In this jotting Modal analysis approach, order reduction technique has been used to demote 
the higher order system to its relegated order. Numerical examples are solved to show the supremacy of this advanced 
technique. Findings: By using the proposed method, the step response of original and reduced order uncertain systems 
are closer when compared to other methods. The relative integral square error values are also less as compared to other 
techniques. Application/Improvements: The relegated model acquired by this approach has its behavior homogeneous 
to the original system. The stability is vowed if the original system is stable. In order to depiction a controller for a higher 
order system it is quite arduous, so by using the order demotion technique it becomes more facile.
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1.  Introduction
Today’s engineering fields like control engineering, signal 
processing, image compression, fluid mechanics and 
power systems, the designing of the systems are tedious, 
complex and computationally uneconomic.

To get survived from these problems model order 
reduction techniques are playing a major role. By imple-
menting these techniques to the higher-order systems 
they are demoted to lower order thereby the system 
designing and simulation become simple and compu-
tationally economic to retain original system essential 
features in its model even after reduction. There are two 
types of approaches namely Frequency domain and Time 
domain. 

Abundance of model order reduction methods were 
posited by the researchers in frequency domain like pade 
approximation1–3, which dwindles the order of the system 
by using time moment matching method, but this method 
has a major drawback that even a stable original model 
may lead to unstable reduced order model. Where as in 

Time domain approach the continued fraction method4 
does not preserve the stability in its reduced order model. 
Systems having uncertain with bounded parameters 
known as interval systems are useful in obtaining reliable 
and perfect solution.

Many methods had been proposed by the research-
ers on interval systems based on the study of stability 
and transient analysis in interval systems5,6. To reduce 
an continuous interval system7, recently mixed methods 
has been proposed to reduce the order of the system, so 
that the accuracy of the system can be increased8–13. There 
are few other methods which are proposed to reduce the 
order of uncertain systems15,16.

In this paper to reduce the order of interval systems, 
“Modal Analysis Approach” method has been used, where 
the system is represented in state space form. 

The outline of this note includes four sections. Problem 
formulation will be discussed in Section 2. The proposed 
method procedure is explained in Section 3. The Error 
analysis of original and reduced order system is done 
in Section 4. In Section 5 Numerical example has been 
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considered, to explain about the proposed method. A 
qualitative comparison between the proposed and other 
methods will be provided in Section 6. Finally, conclusion 
is stated in Section 7.

2.  Problem Statement
Assume an original linear time invariant interval system 
in Controllable Canonical Form:

	 x(t) A x(t) B u(t)n n n m= +× × � (1)

	 � (2)

Where

 

 

n = no. of state variables; m=no. of inputs variables.
q = no. of outputs variables.
The Corresponding relegated order model of an 

interval system is represented in Controllable Canonical 
Form (CCF) as follows:

	 x (t) A x (t) B u(t)r r r r= + � (3)

	 � (4)

Where,

 

 

r = reduced order
Arithmetic operations for an uncertain system are 

explained by14 is as follows:
Addition:

	 [c, d]+ [j, k] =[c+j, d+k]� (5)

Subtraction:

	 [c, d] – [j, k] =[c–k, d–j]� (6)

Multiplication:

	 [c, d] × [j, k]=[min(cj, ck, dj, dk),max(cj, ck, dj, dk)� (7)

Division: 

	 � (8)

3.  Procedure
Step 1: � The equivalent transfer function for the original 

uncertain plant which is expressed in Equation 
(1), Equation (2) is:

	 � (9)

Where,

 

Step 2: � Using Kharitonov’s theorem5 the above interval sys-
tem is transformed to four fixed transfer functions 
which carries the coefficients of Equation (9) this 
can be represented in its general form as:

	 � (10)

Where, 

i ≤ n–1; j ≤ n; p=1, 2, 3, 4

Step 3: � The above four transfer functions are converted 
into four fixed state models:
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	 C C Cp q n p1 p2/ × = 



 � (17)

Where,

p = 1, 2, 3, 4;  and 

Step 10: � Now the four demoted order state models are 
generalized as:

	 x (t) A x (t) B u(t)p/r p/r r r p/r m= +× × � (18) 

	 y (t) C x (t) D u(t)p/r p/q r r p/q m= +× × � (19)

Where

A A A V Vp/r r p1 p2 p3 p1× = +
 

B Bp/r m p1× =
 

C Cp/q r p1× =

p = 1, 2, 3, 4; r = order of reduced system

Step 11: � From the above obtained four reduced rth order 
state models which is expressed in Equation 
(18), Equation (19) and its corresponding four 
reduced rth order transfer functions in its general 
form is expressed as:

	 � (20)

Where,

a ≤ r–1; b ≤ r; p=1, 2, 3, 4; 

r = order of reduced system.
Step 12: � Now the equivalent transfer function for 

relegated uncertain system is equated below:

	 � (21)

Step 13: � Ultimately the reduced model of the uncertain 
system is expressed in Controllable Canonical 
Form (CCF)





   





Xr

r r

(t)

[z ,z ] [z ,z ] [z ,z ]

=

− − −













− + − + − +

0 1 0

0 0 1

0 0 1 1 







+





























x t u(t)r ( )

0

0
1









� (22)

	 y x x x x x xr 0 0 1 1 r-1 r-1 r(t) [ , ] [ , ] [ , ] x (t)=  
− + − + − +

 � (23)

	 x (t) A x(t) B u(t)p/n p/n n p/n m= +× × � (11)

	 y (t) C x(t) D u(t)p/n p/q n p/q m= +× × � (12)

Where,

p = 1, 2, 3, 4

Step 4: � Calculate the Eigen values for the obtained four 
fixed state models represented in Equation (11), 
Equation (12) individually

Step 5: � The modal matrix ( ) is calculated for each 
individual state model:

	 � (13)

Where,

p = 1, 2, 3, 4 ; and 

Step 6: � Then the inverse of modal matrix (V )P  is to be 
reckoned from  as:

	 V
V V
V VP
P1 P2

P3 P4
=













� (14)

Where,

p = 1, 2, 3, 4; V (r r)P1 = ×  and 

Step 7: � The matrix A p n n/ × is divided into sub matrices 
as:

	 A
A A

A A
p n n =

p1 p2

p3 p4

/ ×



  























� (15)

Where,

p = 1, 2, 3, 4;  and 

Step 8: � The matrix B p n m/ ×  is partitioned into the sub 

matrices as:

	 B
B
Bp n m
p1

p2
/ × =

















� (16)

Where,

p = 1, 2, 3, 4;  and 

Step 9: � Then the matrix C p q n/ ×  is divided into the sub 
matrices as expressed below:
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3.	 The above four transfer functions are converted into 
four state models by using Equation (11), Equation 
(12) are:

	 		

	 � (27)

	 � (28)

	 		

	

x
x
x

u
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0
0

(t)
(t)
(t)

(t)
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� (29)

	 � (30)
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+
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� (31) 

	 � (32) 

	

	 � (33)

4. � Relative and Integral Square 
Error

The Relative Integral Square Error between transient 
responses of original and reduced systems is also 
determined as formulated below:

Relative ISE = r dt / r dt[z(t) (t)] [z(t) ( )]− − ∞
∞ ∞

∫ ∫2

0

2

0

ISE = r t dt[z(t) ( )]−
∞

∫ 2

0

Where,
 and  are the unit step responses of original 

Z(s) and reduced R(s) systems,  final value of 
original system.

5.  Numerical Evaluation

5.1  Example 1
Let us consider an interval system having state model as 
followed below:

	 		
1 0
0 1

11 667 18 5 667 9

01

2

3− −




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







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









+
[ . , ] [ . , ]

(t)
(t)
(t)

x
x
x

00
1
















u(t) � (24)

	 		

	 � (25)

1.	 The equivalent transfer function of an uncertain is as 
follows:

	
Z(s)=

s s +[5,8][ . , . ] [ . , . ]
[ , ]s [ . , ]s

0 6667 1 5 5 8333 9 25
1 1 5 667 9

2

3

+
+ 22 11 667 18 6 8333 10 75+ +[ . , ]s [ . , . ] 	

� (26)

2.	 Evaluate the four 3rd order transfer functions by using 
Kharitonov’s theorem as expressed in Equation (10).
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6.	 Now the equivalent reduced order transfer function for 
uncertain system will be as expressed in Equation (21):

	
� (43)

Under steady state condition  then

	
� (44)

7.	 The CCF of the reduced order interval system

	 x x ur r(t)
[ . , . ] [ . , . ]

(t)=
− −









 +











0 1
12 08 17 07 4 705 9 106

0
1

((t) �(45)
					   
	 y xr r(t) [ . , . ] [ . , . ] (t)=  8 837 12 70025 1 0105 2 0595 � (46)

The step responses of both original and reduced 3rd 
order systems are shown in Figure 1.

5.2  Example 2
Let the system be:
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� (47)

	 	

	 	

	 		

	 � (48) 

	 � (34)

4.	 The corresponding Eigen values are calculated 
individually for the above four state models. 

5.	 Then modal matrix, inverse of modal matrix and 
A B Cp/n n p/n m p/q n× × ×, ,  matrices are obtained for the 
four state models individually by using Equation (13) 
to Equation (17).

6.	 Next, four reduced order state models are obtained 
from Equation (18), Equation (19) as given below:

	






x
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x
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





x
x
x

x
x3 2

1

2

1

2

7 072 17 07
1 0/ (t)

(t)
(t)

. . (t)
(t)

=








 =

− −



















		

	 � (39)

	 � (40)

	






x
x
x

x
x4 2

1

2

1

2

4 705 13 27
1 0/ (t)

(t)
(t)

. . (t)
(t)

=








 =

− −



















		

	 � (41)

	 � (42)

5.	 Using four reduced state models from Equation (35) to 
Equation (42) the corresponding reduced order transfer 
functions are acquired as expressed in Equation (20).
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� (51)
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1.	 The equivalent transfer function of an uncertain plant 
is as follows:

	

Z s( ) =
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2.	 Evaluate four fixed 8th order transfer functions by 
using Kharitonov’s theorem as in Equation (10).

3.	 The above four transfer functions are converted into 
four state models by using Equation (11), Equation 
(12) are:
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Figure 1.  Step response of original 3rd order and reduced 
2nd order system using Proposed Method.
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	 � (57)

4.	 Follow the procedural Steps (4 to 9).
5.	 Next, four reduced order state models are obtained 

from Equation (18), Equation (19) as given below:
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6.	 Using four reduced state models from Equation 
(57) to Equation (64) the corresponding reduced 
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Figure 4.  Step response of original 8th order and reduced 
2nd order system using differentiation and factor division 
method.
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Figure 5.  Step response of original 8th order and reduced 
2nd order system using differentiation and cauer second 
form.

Table 1.  Comparison of reduced order models for 3rd order system

S.no. Methods Reduced Order Systems
Step Response 
of Lower Limit

Step Response 
of Higher Limit

ISE 
Values

Relative 
ISE 

Values

ISE 
Values

Relative 
ISE 

Values

1. Proposed 
Method 0.0285 0.1649 0.0090 0.0605

2. Differentiation 
Method 0.0531 0.0396 0.0617 0.0350

3.

Differentiation 
and Factor 
Division 
Method

0.0094 0.0511 0.0074 0.1309

4.
Differentiation 

and Cauer 
Second Form

0.0094 0.0241 0.0073 0.0603
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Figure 2.  Step response of original 8th order and reduced 
2nd order system using proposed method.
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Figure 3.  Step response of original 8th and reduced 2nd 
order system using differentiation method.

order transfer functions are obtained as expressed in 
Equation (20).

7.	 Now the equivalent reduced order transfer function for 
uncertain system will be as expressed in Equation (21):

� (66)

Under steady state condition  then

�(67)

8.	 The CCF of the reduced order interval system:
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	yr (t) [[ . , . ] [ . , . ]]x (t)r= 4337 307 7053 281 160 641 258 836 	
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The step responses of both original and reduced 8th 
order systems are shown in Figure 2.

6. Comparison of Methods
The relegated order models acquired by present method 
are compared with other methods and their corresponding 
ISE and Relative ISE values of reduced models and their 
step response are shown below

The original and reduced model step responses 
obtained by proposed method which is shown in Figure 1 
and Figure 2 are closer when compared to the responses of 
other methods which are shown in Figure 3, 4 and 5. The 
ISE values of proposed technique are less as compared to 
other methods which is shown in Table 1.

7.  Conclusion
The reduction procedure is done for higher order systems 
so that the complexity of the system can be decreased. In 
this paper the order reduction for an uncertain system 
which is represented in state space form is numerically 
evaluated by using the proposed method. The reduced 
order models obtained by proposed method and their ISE 
and Relative ISE values of step response are compared. 
Hence the proposed method preserves stability with low 
ISE values compared to other existing methods.
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