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1.  Introduction

A keyword requisite for a correctly autonomous robot is 
that it can localize itself and carefully map its surroundings 
simultaneously1. Many algorithms have been offered 
for solving SLAM obstacles, for example particle filter, 
Kalman Filter (KF), Extended Kalman Filter (EKF) and an 
Unscented Kalman Filter (UKF). The UKF SLAM making 
a Gaussian noise supposition for the robot observation 
and its movement. The UKF encourage calculation values 
analogous to the ones of EKF but does not requirement 
the linearization of the fundamental model2. 

The UKF uses the unscented transform to linearize 
the movement and measurement models3. RBF, adaptive 
to the change of environmental data flowing through the 
network during the process, can be combined with an 
UKF to atone for some of the disadvantages of an UKF 
SLAM method4.

Amir Panah5 solved the SLAM problem with a neural 
network based on an Unscented Kalman filter. According 

to the research results, the UKF SLAM based on Neural 
Network, shows better performance than the Standard 
UKF SLAM.

Stubberud et al.6 extended an adaptive EKF composed 
with neural networks, with a neuro-observer to learn 
system uncertainties on-line. The offered system boost the 
performance of a control system comprise uncertainties 
in the state-estimator’s model. 

In this article, we describe a Hybrid way using RBF 
network and UKF based SLAM for decline uncertainty in 
compare to SLAM using Standard UKF. we do, consider 
the power of UKF based RBF algorithm to handle 
nonlinear attributes of a mobile robot. 

We started by introducing some related algorithms on 
SLAM are explained in section 2, and the Hybrid algorithm 
is presented in section 3. The detailed description of the 
simulation and experimental results is shown in Section 4 
and finally in Section 5 summarizes the results and gives 
an outlook on future research activities.
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2.  Related Algorithms for SLAM

2.1 Radial basis Function Neural Network
The idea of Radial Basis Function (RBF) Networks 
derives from the theory of function approximation. The 
RBF network is a three-layer feed-forward network. Input 
layer –input layer has one neuron for each predictor 
variable. Input neurons standardizes the limited area 
of the values by reduce the median and dividing by the 
interquartile range. Then  the input neurons require 
the values to each of the neurons in the hidden layer. 
Hidden layer –has an unlimited number of neurons that 
the optimal number is decided by the training process. 
The out coming value is transmitted to the output layer. 
Output layer – The value of a hidden layer that come to 
this layer is multiplied by a weight associated with the 
neuron and transmitted to the output which adds up the 
weighted values and presents this sum as the output of 
the network. That generally uses a linear transfer function 
for the output units and a nonlinear transfer function 
(normally the Gaussian function) for the hidden units. 
The nonlinear transfer function (Gaussian function) 
is applied to the net input to produce a radial function 
of the distance. The output units implement a weighted 
sum of the hidden unit outputs7. The structure of Radial 
Basis Function shows in ( Figure 1). two steps of Network 
training: first, determining the weights from the input to 
the hidden layer; then, the weights from the hidden layer 
to the output layer are determined8.

Figure 1.    A Radial Basis Function Neural Network 
Structure.

2.2 Unscented Kalman Filter 
UKF introduced by Uhlmann and Julier in 1997 for the 
first time. This filter structure is based on unscented 
transformation.

This filter is built based on transformation as unscented 
transformation. In the UKF, there is no need to calculate 

Jacobian matrix. Since, the processing noise in this system 
is accumulative; therefore the augmented state vector is 
used to implementation this approach. In this approach, 
the mean and covariance estimation are calculated with 
considering the second order of the Taylor series.

Assume that a random variable x with covariance PX 
and mean μ is defined and also a random variable z as 
with x is associated: z=f(x). In unscented transformation, 
to gain the covariance and mean random variable z, 
sigma points  that are set of weighted points are used. This 
points should be selected so that have a covariance

 
PX  and 

mean μ.
Calculate the set of 2n+1 sigma points from the columns 
of the matrix ( )n Pxl+ :
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n number of state variables are added. In the above, Wi

 is the weight which is dependent with the i-th point and k 
also is used for adjusting the filter more correctly9.

The UKF makes use of the unscented transform 
described above to give a Gaussian approximation to the 
filtering solution of non-linear optimal filtering problems 
of form, but restated here for convenience:
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Where x is state vector and u is control input and 
ε δ, are the system noise and the measurement noise, 
respectively. In the first phase of implementing this filter, 
the augment state vector will become as the following 
form:
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In continue of this paper, all the formulas that are 
used in the UKF in which it includes of two main from 
sections: Measurement update and Time update10.
•	 The Time Update
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The Measurement Update
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Where x x, , , , , , and ,Q
kk k k k k k xk yk kX P z z P P Km  are 

movement model, predicted mean, observation model, 
predicted observation, novation covariance, cross 
correlation matrix and Kalman gain.

3.   SLAM Algorithm using Hybrid 
Filter

A Hybrid filter is proposed in this part, a RBF supplemented 
for acting as an observer to learn the system completely 
online. The mean, μk which is extracted from values (x y θ 
ε δ) using the RBF algorithm, use for the prediction step, 
as shown in ( Figure 2).

Figure 2.    The Architecture of the Hybrid Filter SLAM

Main Basic inputs are covariance, mean which are 
computed by previous input, uk-1, and present input, uk . in 
a prediction step, The robot computes the previous mean 
and covariance and then, in observation step, it computes 
a Kalman gain, present mean and covariance and defined 
features.

RBF neural network can execute as a fast and correct 
means of approximating a nonlinear mapping based on 
observed data.

3.1 Time Update (Predict)
The Hybrid filter using landmarks as a robot’s position 
and specifications. A configuration of the robot with a 
state equation Xa =  (x y θ ε δ)T , has the form of  Equation 
(18) since it is supposed that the robot is equipped with 
exteroceptive sensors and encoders.
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  (18)

uk = vk + N(0, Mk)    (19)
vk is velocity of wheels, L is the width between the 

robot’s wheels, and ∆t is the sampling period. Finally, 
Mk depicts the covariance matrix of the noise in control 
space. The state equation for landmarks, combined with 
the robot position. (0<i<c)
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The state transition has the form of Eq. (21):
1 1( , ) (0, )Q Q

k k k kX f X u N e- -= +    (21)

εk is the process noise, f shows the nonlinear functions, 
and  uk is control input.

For the Taylor development of function, f its derivative 
is used with respect to Q

kX  , as shown in  Equation (22).
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f  is approximated at uk and μk-1 The linear extrapolation 
is achieved by using the gradient of f at uk and μk-1 as 
shown in Equation (23).
( ) ( ) ( )( )'
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      (23)
With the exchange values gained from equations 1, 2, 

3, 4, 5, previous covariance and mean have the following 
form of:

2n a
k i i,ki=0

w Xm =å      (24)
2n a a T

k i i,k k i,k ki=0
P w [X ][X ]m m= - -å    (25)

As demonstrated in  Equation (26), the observation 
model, zk contains of the nonlinear measurement function 
h and the observation noise δk .
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3.2 The Measurement Update (Correct) 
To obtain the values Pxkyk and Pxkyk , it is necessary to 
compute Q

kX  μk kz  zk that are compute in equations 18, 
24, 26, 28, with replacement of these values. To compute 
the Kalman gain Kk, we need to compute Pxkyk and Pxkyk  
in the feature-based maps. we will  have the following 
equations:

2
xkxk 0

[ ][ ]n T
k ki i,k i,ki=

P w z -z z - z=å   (29)
2

k k 0
[ ][ ]n a T

kx y i i,k k i,ki=
P w X z - zm= -å   (30)

1
k k k kk x y x xK P P -=     (31)

Considering Hybrid algorithm in continuous. RBF 
algorithm is included with train through input data and 
measurement values. In the training process, weights are 
determined based on the communication of input and 
each hidden layers. RBF require higher weight to aim 
value on the higher relations between poses and heading 
angle with comparing to measurement. In addition, the 
second weight, ω0,equals zero because the output offset is 
zero. Therefore, new estimated mean, can be described as 
in Equation (32)11 (0≤ j ≤ J − 1)
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d j is the center of the j-th basis function with the same 
dimension of the input vector and μk is an n-dimensional 
input vector. τi explain the width of the basis function, N is 
the number of hidden layer’s nodes, || ||j j

k dm -  explains the 
Euclidean norm of showing the distance between j

km  and, d j 

and ( )j
k xj  means the answer of the j-th basis function of the 

input vector with a maximum value at d j.
( )kk k kk K z zm m= + -     (33)

T
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4.  Simulations

To showing the effectiveness of offered algorithm, we used 
the amend Matlab code that was developed by Bailey12. 
The simulation was carry out by a robot with maximum 
speeds of 3[m/sec] and wheel diameter of 1[m]. speed 
and the maximum steering angle are 15[°/sec] and 25[°] 
respectively. 

For observation step, the number of arbitrary features 
around waypoints was used. In the observation step, a 
range bearing sensor model and an observation model 
were used to measure robot pose and the feature position, 
which includes 1[°] in bearing and a noise with level of 
0.1[m] in range. The sensor range is 15[m] for small areas 
and 25[m] for large areas.

In this paper, two navigation cases of the robot 
are surveyed: a Circular navigation, and Widespread 
navigation.

4.1 Navigation on Circular Map
In circular navigation, the standard UKF based navigation 
and proposed filter based navigation are shown in (Figure 
3). Bold black line is Robot path and the dashed line, 
show the paths of robots should traverse, based on data 
described by the actual odometry. In (Figure 4), the bold 
gray line (RBFUKF) and the dashed black line (UKF) 
are the x, y, and θ errors in the case of UKF SLAM and 
proposed filter SLAM, and in Table.1 see Mean Square 
Error of it.

Figure 3.    Navigation result on circular map.

Table 1.    Mean Square Error
mse UKFSLAM RBF UKFSLAM
x 0.1681 0.1119
y 0.1934 0.0583
θ 0.0282 0.0280
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Figure 4.    Navigation Errors on Circular Map.

4.2 Navigation on Widespread map
In this case, the UKF based navigation and proposed filter 
based navigation are shown in (Figure 5). The bold black 
line is Robot path and the dashed line, show the paths of 
robots should traverse. (In  Figure 6.), the dashed black 
line (UKF) and the bold gray line (RBFUKF) are the x, y, 
and θ errors in the case of UKF SLAM and Hybrid filter 
SLAM with RBF algorithm, respectively and in Table 2. 
see  Mean Square Error of it.

Figure 5.    Navigation result on widespread map.

Figure 6.    Navigation Errors on Widespread map

Table 2.    Mean Square Errorr 
mse UKFSLAM RBF UKFSLAM
x 0.0750 0.0112
y 0.0835 0.0135
θ 0.0325 0.0259

5.  Conclusion
In this contribution, a new approach proposes UKF 
SLAM based on RBF Network method for a mobile 
robot. The RBFUKF SLAM on a mobile robot, to make 
up for the UKF SLAM error inherently caused by its noise 
assumption and linearization process. The proposed 
algorithm contains of two steps: the UKF algorithm and 
the RBF Neural Network. The simulation results for two 
different navigation cases show that the improvement of 
the proposed filter based on RBF as compared with the 
standard UKF SLAM and it also shown that algorithms 
has good results in wider environment but we require to 
use long range sensors. To define the robustness of the 
proposed algorithm, simulation in Matlab is performed. 
Based on the simulation results, Standard UKF SLAM has 
more errors than proposed filter. 
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