
Abstract
The Objective is to optimize the time in identification of similar code segment in a program, which is represented using
PDG. The method adapted is minimization of finite automata, the states, which are having similar transitions, can be
combined into a single state, through which we can remove the duplicate code in program. Methodology used in current
study is detection of isomorphic sub graphs in a graph where the program segment has been represented using graph, this
approach is very lengthy because finding of sub graphs and identifying isomorphicity between sub graphs. Findings are
the demonstrated through an example in figure 1 to figure 4. The efficiency of suggested idea has been demonstrated in
analysis part. This approach can be used in compiler optimization phase because it connects computationally related parts
of a program; PDG is non-linear data structure in which the transformations can be performed uniformly for both data and
control dependences.

A New Approach for Optimization of Program
Dependence Graph using Finite Automata

Shanthi Makka* and B. B. Sagar

 BITs-Ranchi (Noida Campus), Noida - 201301, Uttar Pradesh, India; shanthi_makka@yahoo.com,
shanthi.makka@gmail.com, drbbsagar@gmail.com

Keywords: DFA, Finite Automata, Isomorphic Graphs, Minimization of Finite Automata, Optimized PDG, PDG

1.  Introduction
A Graph can be defined as a non-linear data structure,
which allows random access to data and there are many
algorithms6 exist to do manipulations on data stored
in a Graph. In the field of Computer Science, the term
“graph transformation” is wholly employed to evidences
the ceremonious skeleton for metamorphosis of the Class
Graph, which exemplifies the high level structure of the
source code7. There are three different types of graph
data structures such as Control Flow Graph, Data Flow
Graph and PDG essential worn for analysis part, and
their transformation algorithms occasionally confide
on additional data structure is called as Abstract Syntax
Trees (AST) for the factual transformations. But, in this
paper we have demonstrated a PDG can also be used for
transformations. The fundamental supremacy of graph
transformations in accustomed is that they tender a cer-
emonial and mathematical schema that concedes for
disparate perfunctory contingent upon properties, inclu-
sive of the potentiality subject to a given transformation
is amend. Flow analysis is a method of analysis of data

and control flows of a source program. In object-oriented
programming languages10, preconditions can be verified
by the data flow in source program i.e., that the extracted
method returns solely one result and the control flow in a
program arbitrates whether the method can be extracted
at all or not i.e., it has to verify that there must be a single
entry and single exit precondition point.

Finite State Automata has great impact in the filed of
computer science software as well as in hardware appli-
cations. A Finite State Machine (FSM) allows us to have
great hypothetical approach in solving various problems
in Computer Science and Information technology and
Automata13 also enables application to run at efficient or
maximum speed. The increasing computational power of
computers does not depend only on the increase CPU fre-
quency but also on other invented technologies. So, the
finite automata implementations must consider all these
technologies.

A Deterministic Finite Automata can be formally
defined as 5 tuples, M=(Q, ∑, δ, q0, F) where Q is Finite set
of states, ∑ is Finite set of input alphabet, δ is a Transition

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(38), DOI: 10.17485/ijst/2016/v9i38/102163, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A New Approach for Optimization of Program Dependence Graph using Finite Automata

Indian Journal of Science and Technology2 Vol 9 (38) | October 2016 | www.indjst.org

function: QX∑→Q, which reflects entire behavior of a
system, q0 is a start or initial state from where the process-
ing ahs be done and F is Finite set of Final States, which
determines the acceptance of the string.

2. � Program Dependence Graph
(PDG)

The Program Dependence Graph (PDG) enables both data
flow and control flow dependences in a segment of a pro-
gram. The PDG also represents execution order like DFG.
The conventional Program Dependence Graph (PDG)1 is
a directed graph where the vertices denotes computing
and control operations in a program and also few vertices
are employed as entry nodes (represents entry into a func-
tion or a procedure) and exit nodes (indicates going out
from a function or procedure). The dependency between
segments in a program can be represented by drawing
edge between two nodes, which represents two different
segments of a program. There are two major constituents,
one is that the edges have been differentiated as data and
control dependences and secondly we use flag for control
dependence edges. If there is a control dependency from
a node ‘C’ to node ‘D’, the segment denoted by node ‘D’
will get executed after the segment denoted by node ‘C’.
In a similar way if there is a data dependency edge from
node ‘X’ to node ‘Y’, then the segment represented by ‘X’
assigns some value to a variable, which will be used at the
segment represented by ‘Y’. The main application of PDG
is in program slicing1,2, extraction of all consecutive or not
consecutive statements in to a method, which can affect
the value of the variable at given location. In a PDG, the
instructions are placed in the vertices of a graph and a
control dependence edge decides the execution sequence
of statements in a source code and also determines how
many times the target code get executed. A data depen-
dence edge indicates the value of some data initialized or
updated is positively used by target code or not.

We have considered an example of QUICK SORT,
Constructed a PDG where Dotted arrows are used to
represent data dependencies and Solid arrows are used
for Control Dependencies. The Looping constructs and
Recursive calls are represented through self-loops. There
is a dotted line from recursive calls to main function,
because whenever there is a recursive call in pro-
gram, the control moves to main function on specified
data inputs. The control dependency is already shown
through solid line.

void QUICK_SORT(int input[20],int l, int h)
{
 int p,b,tp,f;
 if(l<h) {
  p = input[l];
  f = l;
  b = h;
  while(f<b) {
  while((input[f]<=p)&&(f<h))
  {f++; }
  while(input[b]>p)
  { b--; }
  if(f<b) {
  tp=input[f];
  input[f]=input[b];
  input[b]=tp;
 } }
  tp=input[l];
  input[l]=input[b];
  input[b]=tp;
  QUICK_SORT(input,l,b-1);
  QUICK_SORT(input,b+1,h);
 }}
� → Data dependences
� → Control dependences

The effective use of PDG is depends only on the existing
data flow and nested blocks, but it never depend on the
sequence of instructions occurred in a source program. If
any two instructions are not having any control and data
dependency edges, then we can swap those instructions

Figure 1.  Program Dependence Graph (PDG).

Shanthi Makka and B. B. Sagar

Indian Journal of Science and Technology 3Vol 9 (38) | October 2016 | www.indjst.org

without interfering the basic significance. Mostly it is
used in the optimization phase of compilation.

3.  Finite State Machines (FSM)
Ceremoniously the scope of FSM covers all the states and
transitions, which a machine can accept while moving
ahead with sequence of input symbols in input alphabet.
Suppose you want to write a program to recognize the
word “main” refer below program segment:
l:  Scanf(“%c”,&ch)
   while (char != “m”) Scanf(“%c”,&ch)
   if (Scanf(“%c”,&ch)!= “a”) goto l
   if (Scanf(“%c”,&ch)!= “i”) goto l
   if (Scanf(“%c”,&ch)!= “n”) goto l
   done
The Program can be explained as follows:
   Initialization
   Searching for “m”
   Recognized “m”, Searching for “a”
   Recognized “ma”, Searching for “i”
   Recognized “mai”, Searching for “n”
   Recognized “main”
The demonstration of entire process in a graphical way
as follows:

 i.	 Every vertex represents a statement in a process
ii.	 Edges or arcs from one vertex to other shows the

movement from one statement to another statement
iii.	The Labels on the arcs denotes the to the input required

to make a transition

The processing of input string using Finite Automata
is as follows:

i.	 Start processing at initial state
ii.	 If the next input symbol in the input string matches

with character on the arc then Automata moves the
next state

iii.	Repeat the process for all the characters in a input
string

a.	 If there is no further move possible, then simply stop
b.	 If an automata reaches to final state after processing

entire input string then accept

Basically, there are two variants of Finite Automata are
there, one is DFA, a Deterministic Finite Automata: From
every state for every input symbol the transition must be
there and that transition must be unique. The second cat-
egory is NDFA, Non Deterministic Finite Automata: Not

compulsory to have transitions for every state on every
input symbol, transition may not unique. Fundamentally
NDFA can have multiple paths simultaneously where as
DFA must have single path at the same time.

4.  Optimization of PDG using FA
We proposed an approach for Optimization of PDG using
FA: The concept of minimization of Finite Automata has
been used to identify similar or identical transitions, can
be merged further through which we can have minimum
number of states which fulfills the same task.

4.1 � Minimization Algorithm [14] of Finite
Automata

i.	 Identify and remove the unreachable states. These
states are the states with no incoming transition, but
only outgoing transition.

ii.	 Draw two transition tables T1 and T2 where T1 contains
all rows which contain states from Q-F and T2 contains
all the states from set F.

iii.	All trap states are indistinguishable. So we remove all
the trap states except for the one with the lowest index
and replace the trap states reference with the only trap
state left.

iv.	 Find the similar rows from T1 such that the states after
transition on a given input are same for those states.
From the set of similar rows remove all the rows from
the table except the one with the smallest index and
make corresponding changes to the table.

v.	 Repeat the above step till all redundant rows have been
eliminated.

vi.	Repeat step iv and v for table T2

vii.	Now combine the tables to get the minimized DFA.

4.2 � Demonstration of our approach with an
example

Let us consider an example of finding Greatest Common
Divisor (GCD) of two numbers.
void function() {int x ,y;
scanf(“%d”,&x);
scanf(“%d”,&y);
while (x !=y) {
if (x> y)
x = x - y;
else y= y -x;
}printf(“%d”,x); }

A New Approach for Optimization of Program Dependence Graph using Finite Automata

Indian Journal of Science and Technology4 Vol 9 (38) | October 2016 | www.indjst.org

L1={{E},{A},{B,C,D,F,G,H}}
L2={{E},{A},{B,G},{C,H},{D,F}}
L3={{E},{A},{B},{C},{H},{D,F},{G}}
L4={{E},{A},{B},{C},{H},{D,F},{G}}
Stop when previous and current set is same (i.e. L3=L4)

4.3  Algorithm
Construct PDG for the given segment of a Program.
Renaming of nodes with labels like A,B,C,…. Etc.
Reconstruct the PDG. Apply minimization approach to
identify similar transitions. Merge identical transitions in
to single node. You can see final Optimized PDG.

4.4  Applications of PDG
4.4.1  Program Slicing using PDG
A program slicing is an immediate application of PDG
can be defined as a sequence of steps, where the value of a
variable get changed at particular segment of a program.
Slicing cannot be used directly for “extract method” refac-
toring8 mentioned in this paper, which is to clipping of a
remnant of continuous statements. Let us consider below
example:
int sum,n,min;
sum=0;
min= ∞
for (int i = 0; i < n; i++)
{
sum+ = a[i];
if(min>a[i])
min= a[i];}
printf(“Summation= “, sum);
printf(“minimum value= “, min);
After the slicing for finding sum is as follows:
 int summation(int[] a) {
int sum= 0;
for (int i = 0; i < n; i++) {
sum+= a[i];
}return sum;}
After the slicing for finding smallest element is as
follows:
int smallest(int[] a)
{int min= ∞;
for (int i = 0; i < n; i++)
{if(min>a[i])
min=a[i];
}return min;
}

Renaming of Statements for simplification: Rename all
the statements in above program as A,B,C,D, E, F, G and
H for void function() , scanf(“%d”,&x), scanf(“%d”,&y),
while (x !=y),if (x> y), x = x – y, y= y –x, printf(“%d”,x)
respectively. Redraw the PDG, by mentioning variable
dependency on the arc of data dependency line.

Now, we can apply the concept of minimization of
finite automata

Figure 2.  PDG for Greatest Common Divisor.

Figure 3.  PDG for Greatest Common Divisor along with
renaming of nodes and labeling.

Figure 4.  Optimized PDG for Greatest Common Divisor.

Shanthi Makka and B. B. Sagar

Indian Journal of Science and Technology 5Vol 9 (38) | October 2016 | www.indjst.org

By extracting both the methods in above slices, the
original code can be turned into:
 int sum= summation(a);
int p = smallest(a);
printf(“Summation= “, sum);
printf(“minimum value= “, min);

If the PDG of the code is known, slicing is nothing
but a reverse the edges of PDG3 and collects all the ver-
tices, which are reachable from the vertex containing the
final targeted variable. Contemplate that, Slicing extracts
not only consecutive statements, but also when slicing
using two different variables, some statements may be
common in both slices. In above example ‘for’ loop got
dualized. A slicing can be used to return multiple results
through methods and it is also benefited in analysis and
implementation parts which were discussed in detailed in
previous papers3-5.

4.4.2  Identification of Similar Sub Graphs
Now a day’s all most in all software systems1 similar or
duplicated code is common, all though programmers
knows that cut, copy and paste is a bad practice but still
it is used by everyone. The identification of similar code
can be done by finding similar sub graphs in a directed
graph. That kind of similar sub graphs are called as iso-
morphic graphs. This approach is used on PDG not only
to determine morphological configuration of programs
but also the data flow within the segments of program.
This approach can be implemented within the non-poly-
nomial amount of time. The main draw back with this
approach is software maintenance is very difficult, but
it is very easy and cheap during the software develop-
ment (i.e. the modifications done in the primitive code
should also implied in replicated code and errors might
have been duplicated in the duplicated code). Two graphs
are said to be isomorphic if they have similar number of
vertices are connected in a same way. That means the path

existing between every two vertices should be similar in
both isomorphic graphs.

5. Analysis
Our suggested approach begins with the constructions
of PDG for the given segment of a program, which pos-
tulates O (n2) time where n is number of operational
statements. Then we optimize PDG using the concept of
minimization of a Finite Automata, which takes O (mc
log m) time, where m is the number of states and c is the
size of an input alphabet. But number of statements in a
PDG is equal to the number of states of a finite automata
i.e., m=n. So by substituting ‘n’ in place of ‘m’ the resultant
time turns in to

O (n*c log n). So the total time required to implement
our approach is T (n)= O (nc log n)+ O(n 2). We have
also plotted 3 D surface graph for this analysis part by
taking c, n, and T (n) as three dimensions.

6.  Related Work
Construction of isomorphic sub graphs to identify
duplicated code (clone) in a program11 was already discussed
by R. Komondoor and S. Horowitz, but their procedure has
certain limitations like they have to visit every node exactly
once during sub graph construction and their approach
cannot analyze big programs because of PDG generating
infrastructure. In1,12 they mentioned a procedure to identify
similar code in a program is similar to identification of dif-
ferences between programs based on PDG, i.e. once if we can
identify differences between modules of programs and from
the remaining segments clone identification makes easier.
Few papers also demonstrated how PDG can be used for
complier optimization phase. In13, they have implemented
Deterministic Finite Automata on Parallel Computers.

Figure 5.  Isomorphic graphs.
Figure 6.  Graphical representation of performance
analysis.

A New Approach for Optimization of Program Dependence Graph using Finite Automata

Indian Journal of Science and Technology6 Vol 9 (38) | October 2016 | www.indjst.org

  2.	 Horwitz SB, Reps TW, Binkley D. Interprocedural
slicing using dependence graphs. ACM Transactions on
Programming Languages and Systems. 1990; 12(1).

  3.	 Komondoor R. Automated Duplicated-Code Detection and
Procedure Extraction, PhD at the University of Wisconsin:
Madison, 2003.

  4.	 Ettinger R. Refactoring via Program Slicing and Sliding,
PhD at the Oxford University Computing Laboratory:
Programming Tools Group, 2006.

  5.	 Zanardini D. The Semantics of Abstract Program Slicing,
Proc. of the 8th IEEE Int Working Conf on Source Code
Analysis and Manipulation. 2008. p. 89–98.

  6.	 Cormen TH. Introduction to Algorithms. 2nd edn. MIT
Press, 1998.

  7.	 Mens T. On the Use of Graph Transformations for Model
Refactoring, Generative and Transformational Techniques
in Software Engineering. 2006; 219–57.

  8.	 Martin Fowler. Refactoring Home Page. Available from:
http://www.refactoring.com.

  9.	 Mens T, Tourwe T. A Survey of Software Refactoring.
IEEE Transactions on Software Engineering. 2004;
30(2):126–39.

10.	 Verbaere M, Ettinger R, de Moor O. Jun GL: A Scripting
Language for Refactoring, 28th International Conference
on Software Engineering. 2006. p. 172–81.

11.	 Komondoor R, Horwitz S. Using slicing to identify
duplication in source code. In Eighth International Static
Analysis Symposium (SAS), 2001.

12.	 Horwitz S, Prins J, Reps T. Integrating noninterfering ver-
sions of programs. ACM Transactions on Programming
Languages and Systems. 1989; 11(3).

13.	 Holub J, Stekr S. Implementation of Deterministic Finite
Automata on Parallel Computers. This research has been
partially supported by the Ministry of Education, Youth
and Sports under research program MSM 6840770014 and
the Czech Science Foundation as project 201/06 (2009):
1039.

14.	 Hopcroft JE, Motwani R, Ullman JD. Introduction to
automata theory, languages, and computation. ACM
SIGACT News. 2001; 32(1):60–5.

7.  Conclusion
An efficient way or structure to represent a program,
called Program Dependence Graph has been discussed
and also demonstrated how to construct a PDG for seg-
ment of a program with an example. In this paper we have
presented an approach for optimization of PDG using the
concept of minimization finite automata i.e., we have also
demonstrated an approach in an algorithmic form and a
framework to identify similar code through similar sub
graphs using program dependence graphs. Program slicing
concept also demonstrated with an appropriate example.
Different ways to model or represent a computer program
also discussed in this paper, i.e. a class graph, abstract
syntax tree, control flow graph along with an appropri-
ate examples. An approach to identify clone or duplicated
code in the program demonstrated with an algorithm.

8.  Future Work
We have discussed optimization of PDG using
minimization of Finite Automata, this approach can be
extended in identification of identical code. We have
also demonstrated how PDG can be used for refactor-
ing9 for clone detection, slicing and extract method with
few examples. This work can be extended to make effi-
cient algorithm to identify independent modules in a
programs. After that how these modules can be executed
on or according to the topology suggested. This work can
further bring in to the parallelization scenario.

9.  References
1.	 Horwitz SB, Reps TW. The use of program dependence

graphs in software engineering. In Proceedings of
the Fourteenth International Conference on Software
Engineering. 1992.

