
Abstract
Objectives: To design a new framework to efficiently parallelize the steps of VLASPD algorithm using a hybridized apriori 
and fp-growth on GPU; to implement the existing and proposed framework in CUDA;to improve the performance factors 
like computational time, memory and CPU utilization.Methods/Statistical Analysis: This paper proposes the acceleration 
of Protein-Protein Interactions (PPIs) prediction on Graphics Processing Units(GPUs). A GPU can provide more process-
ing cores and computational power in the same cost as a CPU.Findings: The frequently occurring patterns in the protein 
sequences can be used for PPIs prediction.The moving of the approaches from fixed length to variable length lead to com-
putational complexity but also is found to be advantageous.Applications/Improvements:Sequence biology is since being 
researched by various computer engineers, the GPUs can be employed for predicting various sequence interactions like 
DNA-Proteins, etc. Since the GPU runs the parallel code efficiently, the methodology can be further improved if efficiently 
parallelized.
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1. Introduction
Bioinformatics is the study and understanding of biologi-
cal data with the help of computer science, mathematics, 
engineering and statistics. This biological data could be 
protein sequences, genomes, nucleotides and many more. 
Bioinformatics lets us see life at molecular level with a 
clear vision1.A Protein sequence is a chain combination 
of amino acids connected by peptide bonds. These amino 
acids come together in chains to form a protein. Different 
combinations of amino acids would form different pro-
teins but only a handful (~500) of valid combinations is 
there which form proteins2. These sequences are too long 
and complex to do remember or determine. So, the amino 
acid data is fed to a computer system which further gives 
out a protein as the output. Large computer databases of 
the sequences are kept3.The approach of biological data 
processing has now moved to computational biology, the 
manual work has been reduced to a large extent and com-
putational researchers has taken place of the scientists 
those performing experimental approaches4.

These sequences are important to the structural repre-
sentations since they can be used to predict the behavior 
of proteins, like interaction among the proteins with less 
complexity5. The sequences are searched for similarities 
in them, or co-occurrence of patterns. Various algorithms 
have been developed by the researchers, which uses the 
concept of ‘k-mers’ to predict the interaction among 
the proteins. ‘k-mers’ are fixed length patterns found in 
sequences. Forming associations between the frequently 
occurring patterns are being efficiently used to predict 
the interaction among protein sequences. The recent 
algorithm called VLASPD (Variable length Associative 
Sequential Pattern Discovery) emphasizes on searching 
for frequently occurring ‘variable length patterns’ in the 
database, and then finding the associations among them5. 
The significant associations then predict the interactions 
among the proteins. Although VLASPD provides a new 
research but this can be further improved by the efficient 
use of data structures.
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As the technology is advancing and new data is being 
researched, there is a need of a fast and reliable computer 
system which can do the complex calculations as fast as 
possible with as little effort as possible. To achieve this, 
a GPU (Graphics processing unit) would be an efficient 
choice to base the computer system. A GPU is a special-
ized processor used to accelerate the processing of images 
and graphics. A GPU can provide more processing cores 
and computational power in the same cost as a CPU. 
This is because they have a high parallel structure which 
makes them very efficient for processing algorithms and 
data in parallel6. The paper also proposes a novel paral-
lel algorithm for frequent patterns mining and forming 
associations on GPU.

1.1 GPUs Accelerate Applications
A fairly recent advancement in the field of bioinformat-
ics is the appliance of Graphical Processing Units (GPU) 
that uses thousands of cores, and thus increases comput-
ing power as compared to the CPU. Initially planned for 
video gaming & graphics, GPUs have turned out to be 
capable and adaptable for complex computing applica-
tions. These can be used for general purpose computing 
and simulations such as fluid dynamics, rigid-body phys-
ics, and many more3. Modern GPUs are exceptionally 
parallelized floating point stream processors(NVIDIA 
latest graphic cards can produce 20 GFLOPS for each 
watt) which can provide un-pretended performance by 
running compute-intensive tasks on GPU, while the rest 
of the code still keeps running on the CPU6. GPUs com-
prise of processing elements that are more efficient than 
those of parallel CPUs. These Processing Elements(PEs) 
are assembled into various multiprocessors that provide 
facilities like shared memory6. Figure 1 shows the basic 
structure of modern GPU. The number of processing ele-
ments varies in various multiprocessors. Multiprocessor’s 
elements perform same operation on the data: thus called 
Single Instruction Multiple Thread(SIMT) processors. 

The multiple cores embedded in a GPU and SIMD 
processing means that GPU has a large number of ALUs 
in comparison to CPU. SIMD width(number of working 
items processed by GPU thread) over GPU is thus more.

1.2  Compute Unified Device 
Architecture(CUDA)

NVIDIA released CUDA in 2007, which is the platform 
and the API (Application Programming Interface) that 

Figure 1. (a) The diagrammatic view of CPU containing 
multiple parallel processing cores, whereas (b) GPUs 
contains hundreds of cores.

allows the programmers to use the commonly used lan-
guages like C, C++ to access NVIDIA GPU’s resources. 
CUDA architecture, as shown in Figure 2 contains several 
blocks, each containing a number of threads. The number 
of threads in a block can be chosen by the programmer6. 
The block level threads, executing parallel can be called as 
Warp. The blocks are grouped into grids. All the blocks in 
a grid are of same shape and size. The execution of threads 
in a same block is done by same microprocessor, which 
can also process other blocks simultaneously.

The proposed methodology aims to design a new 
framework to efficiently parallelize the steps of VLASPD 
algorithm with GPU.

A method is proposedthat used k-mers to predict the 
protein-protein interactions. The method first traversed 
the entire protein database to find 3-mers, i.e. all the possi-
ble patterns of amino acids of size three. A pairwise kernel 
function checked the similarities between every pair in 
the database. Then, the Support Vector Machine(SVM) 
was used to distinguish between the proteins that could 
interact, and others that could not7.

Another approach isdeveloped for PPI prediction, 
which is the first method for successfully predicting pro-
tein interactions by using only sequence information. 
This approach uses machine learning techniques for pre-
dictions. The method used s-kernel instead of pairwise 
kernel that used s-kernel function instead of pairwise 
function. The method differed from that of Beh-Hur’s 
method was the kernel used. This method made use of 
SVM8. Some authors5 recently claimed that the pat-
terns of variable length in the protein sequences can be 
efficiently used to predict the interactions between the 
protein sequences. The proposed method involved three 
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achieved 1.8 GCUPS on single and 3.48GCUPs on dual 
GeForce 8800 GT GPU while searching Swiss-Prot, 
which was 2 to 30 times faster than the previous imple-
mentations on GPU taken for comparison. However, the 
usage of Manavski and Valle, while conveying great per-
formance, could not completely exploit the capability of 
the  hardware.

Manavski algorithm isimproved11. The project claimed 
many drawbacks in the previous algorithms, which are 
illustrated: Using texture memory of GPU to store query 
profile fills it up quickly, thus caused cache misses and 
memory delays as a result. Query length larger than 356 
caused cache misses.The necessary multiple launches of 
kernel due to large number of database sequences to pro-
cess limited grid size also caused latency.

Akoglu algorithm11 used two cached memories on 
GPU, texture cache and constant cache. It eliminated the 
use of CPU completely. A function using ASCII code table 
accessed the score in substitution matrix. Storing the sub-
stitution matrix and query sequence in constant memory 
since access to constant memory, made the algorithm 
execute faster, the similarity scores were stored in shard 
memory, which even made the algorithm faster. The algo-
rithm could thus reduce bottlenecks. The algorithm used 
64 threads per block as in case of Manavski algorithm. 
SW score in this case was calculated as four cells at a time. 
Global memory stored cell calculations simultaneously as 
updated.

CUDASW++ versions for protein database search 
onto NVIDIA GPUs is proposed12–14. These proved to be 
one of the key undertakings for implementation of the 
Smith-Waterman algorithm on GPUs, the source code of 
CUDASW++ is openly accessible. 

CUDASW++ 1.012 performed all the Smith-
Waterman calculations on GPUs by using the multiple 
G200 (and higher) GPUs for performance enhancement. 
The sequences of length less than threshold length were 
aligned using intertask kernel (uses single thread to align). 
And, those sequences of length greater than threshold 
were aligned using intratask kernel (used thread block to 
compute the alignment). The intratask method imposed 
communication between the threads. Intertask kernel 
could achieve better performance due to high parallelism. 
The average performance of intertask kernel was approxi-
mately 17 GigaCUPS(GCUPs) while that of intratask 
kernel was 1.5 GCUPs when same query was compared 
on same database sequence on the Tesla C1060. This per-
formance dropped with increase in threshold.

Figure 2. CUDA hierarchy.

steps. The first involved the identification of frequently 
occurring patterns of ‘variable sizes’. The first step used 
apriori algorithm. The second step finds out all the possi-
ble associations between all the possible pairs of frequently 
identified frequent patterns. The third step involved the 
identification of the significant associations. The final step 
after this step predicted the interactions between the pro-
tein sequences in the database.

The literature review included some papers on 
acceleration of sequence alignments, those using Smith 
Waterman algorithm on GPU. These are included in this 
section.

SW algorithm9 is implemented an SW algorithm 
on graphics card for the first time by using graphic API 
(OpenGL + GLSL) to gain high performance. The align-
ment method ran 9 to 15 times faster than other database 
searches like OSEARCH3 and SSEARCH3. The approach 
used was: First copy the query and database sequences as 
textures to GPU memory, then operate the score matrix 
in an anti-diagonal manner and a pixel is drawn, which 
executes a pixel shader, which calculates score for the cell. 
The results act as input in next pass. The method offered 
execution in two modes, i.e. with and without trace back. 
The version with no trace back showed performance as 
241 MCUPS, 178 with trace back, 120 GCUPS was the 
performance on CPU.

The first usage of CUDA10 is implemented for aligning 
protein sequences, ‘SW-CUDA’. The complete alignment 
task was performed by each of the GPU processing ele-
ments, rather than processing as a single matrix. Major 
advantage gained here was the reduced memory accesses, 
since no communication between the processing ele-
ments was required. The method generated a query 
profile, which was a query specific substitution matrix 
(query elements taken as columns),generated once for 
the entire database. The access to query profile was 
much less than that of substitution matrix. SW-CUDA 
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Work is published13 on protein database search on GPU 
at the same time as that of CUDASW++, they proposed 
how to utilize shared memory to enhance the performance 
of the Smith-Waterman algorithm. The project did not 
implement intra-task parallelism for the long sequences. 
The results were compared to parallel implementation 
of cell processor14, which provided highest performance 
of Smith-Waterman approximately 9 GCUPs on single 
CPU. The measured performance of Ligowski algorithm 
on NVIDIA 9800 GX2 was 14.5 GCUPS, which was thus 
measured as the leading performance among those algo-
rithms of those times. The paper claimed its performance 
factor roughly be double of Farrar implementation15 and 
was 50 percent more than the previous version of same 
algorithm on Sony PlayStation314.

Parallel scan algorithm is porposed16 and claimed 
that the classical diagonal parallelism undergoes non-
uniform parallelism distribution and the memory access 
is difficult. Thus, memory coalescing is less advantageous 
in that case. They aimed to fully parallelize the process-
ing of cells in a row of matrix, for which, parallel scan 
was performed to update the cells. In order to impose 
the data dependence between the cells in the same row, 
they performed the parallel scan for updating the values 
of the cells, which required high cost for synchroniza-
tion between threads and thread blocks. The parallel scan 
algorithm could also be employed in intratask kernel of 
CUDASW++.

An enhanced version of CUDASW++ is produced17, 
and named it as CUDASW++ 2.0, 2010, enhanced the 
performance of CUDASW++ 1.0 based on SIMT abstrac-
tion. The performance factor was increased to 17 GCUPs 
on single NVIDIA GeForce 280 and 30 on dual NVIDIA 
GeForce GTX 295. 

The improvement in backtracking procedure is per-
formed18. The method used four Boolean matrices to 
store the directions of backward moves during backtrack-
ing process. The method can be applied to CUDASW++, 
to improve the performance. The results were not as good 
as CUDASW2.0.

Intrataskparallelizationis used16 and multiple GPUs to 
propose a CUDA based SW algorithm, CUDA-SSCA\#1.

Another algorithm (HKA algorithm) is proposed19 
by using new sequence database organization and sev-
eral optimizations on GPU to reduce memory accesses. 
Method pre-converted the sequences into the for-
mat that was easy to access. The sequences were first 
sorted, and then sequence sets and sequence groups 

were formed, which were formed by concatenating 
the sequences. The data read writes were reduced to 
reduce the memory access, thus increasing the per-
formance. The algorithm was 1.13 times better than 
CUDASW++2.0. 

Another attempt is made to improve CUDA++. The 
authors20 proposed a tiling approach for performance 
enhancement of the intratask kernel of CUDASW++. 
The paper called attention to a few essential configuration 
issues for tuning execution, including how to ensure that 
registers are used, rather than global memory, even with 
exceeded capacity. The improved intra-task kernel when 
employed into CUDASW++ increased the average per-
formance by 4 GCUPs or 25%.

CUDASW++ 3.0 used CUDA C++21 and PTX low 
level computing constructs, which focused on GPUs 
build around Kepler building design. It performed simul-
taneous CPU and GPU calculations to speed up the SW 
algorithm, by dynamically distributing the workload 
among them to balance the execution times. The method 
implemented Multithreading and SSE based instruc-
tions are implemented on CPU side and PTX SIMD 
instructions were implemented on GPU to parallelize the 
Smith-Waterman algorithm.

Another method isproposedcalled CUDA-SWf (an 
ITE technique)22 to compare a query sequence to mul-
tiple database sequences, that used Frequency Distant 
Filtration Scheme(FDFS) to filter unnecessary sequences 
at run time. FDFS used GPU to first calculate the fre-
quency vectors for the query and for the database 
sequences. Secondly it calculates the frequency distance 
between the queries and database sequences. Thirdly the 
sequences that are needed to be compared are transferred 
from to GPU to CPU. Finally, sorting of sequences takes 
place in CPU, and the sorted sequences are retransmitted 
to GPU for SW computations.

An enhanced version of CUDA-SWf as CUDA-SWfr 
is introduced23. The paper performed protein database 
search on CPU-GPU collaborative system that used 
Intratask parallelization technique and improvedthe 
statistical measure and efficiency of the previous 
 algorithm. 

A method isintroducedfor efficiently mapping short 
query sequences. The24algorithm focused on performance 
enhancement by making the database organization more 
effective; the GPU threads were increased for every data-
base sequence; and minimizing the memory access to 
avoid bottlenecks.
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2. Scope of the Study
Proteins as complex structures are difficult to understand 
without the deep knowledge of biology. Many researches 
has been made that considers the sequence data of pro-
tein to predict the behavior, structure and interactions 
between the proteins sequences stored in the databases. 
Various computational techniques have also been dis-
cussed by various researchers to enhance the interaction 
prediction process. An important process among all is the 
prediction of interactions between proteins by analyzing 
the sequence data. Although various efforts have been 
made to develop an efficient methodology for predicting 
the interactions, the efficiency, and performance is still a 
challenge for computer engineers and biologists. 

Use of sequences has been done in various researches 
for PPI prediction. ‘K-mers’ is the example of such appli-
cation. Although the approach has been made to move 
from k length patterns comparison and alignment to 
variable length patterns, but efficiency is still the issue. 
Researchers have scope to parallelize the sequence align-
ments and the prediction of interactions on high speed 
parallel organized architecture of GPU.

3. Methodology proposed

3.1  Methodology Used in Existing 
Algorithm

3.1.1 Apriori Algorithm
Apriori algorithm is a classical algorithm designed to 
work for databases containing sequence data like transac-
tions made by customers, sequence database and others. 
The algorithm is used to find out the frequently occur-
ring item sets/patterns of proteins in the database based 
on the fact that the item sets of frequent item sets are also 
frequent. The frequently occurring item sets of size K can 
be combined to form a K+1 size frequent item set. 

3.1.2  Forming Associations between Frequent 
Subsequences

For every two frequent subsequences(patterns), the four 
possible combinations are made. i.e. the presence and 
absence of the subsequences can be: < p1present, p2pre-
sent >;< p1present, p2absent >;< p1absent, p2present>;< 
p1absent, p2absent >. Where p1 represents the subse-
quence in protein sequence1 and p2 is the  subsequence 

in sequence2. The values of the cells in Table 1 are 
 incremented for all combinations of sequence pairs. These 
associations are shown in Table 1.

Although VLASPD provides efficient prediction of 
interactions among proteins. But using apriori algo-
rithm is expensive in terms of both memory and time, 
and become even more complex when the candidate 
subsequent size increases. The research proposal tends to 
accelerate the task of finding variable size substrings in 
the sequences and finding the associations between all the 
possible pairs.

3.2  Parallel VLASPD(GPU Accelerated 
Frequent Mining and Associations 
Mining)

The trie data structure and vertical Bitset representation 
approach is used to reduce the memory consumption 
and the GPU implementation enhances the performance. 
These have been explained.

3.2.1  TrieTree and Vertical Representation of 
Sequence Sets

While adding an item to k-length item set to form k+1-
length item set, it is considered that the portion k is same 
in the item sets (Figure 3). The new node is added to leaf 
nodes in Trie data structure by placing the sibling as the 
child node of the leaf node. Thus the sequences can be 
places as the hierarchal tree structure.

Consider the four sequences, S1-ACDEF, S2-CDEFG, 
S3-DEGH and S4-ACDEF. These sequences can be rep-
resented by two approaches: Horizontal and Vertical 
approach. Most of the recent storage techniques make 
use of vertical approach to store the transactions along 
with the items belonging to the transaction.Table 2 shows 
the use of vertical approach, i.e. the sequence numbers 
(Sequence Sets) corresponding to each particular amino 
acid are written in front of it. BitSet is a set of n bits, where 
n is the number of sequences in the consideration, where 

Table 1. Forming associations between patterns

Possible Combinations Interactions No Interactions
< p1, p2 >
< p1, p2 >
< p1, p2 >
< p1, p2 >
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Figure 3. Trie representation of items (amino acids) for 
finding all possible variable length patterns in a protein.
ACEFG

Table 2. Vertical representation, bitset

Amino acid alphabet BitSet< S1; S2; S3; S4 >
A 1001
C 1101
D 1111
E 1111
F 1111
G 0110
H 0010

AC 1001
AD 1001
AE 1001
AF 1001

0 represents the occurrence and 1 represents no occur-
rence of the amino acid in the particular sequence. While 
moving from k to k+1 size item set, bitwise AND opera-
tion A AND C = 1001 AND 1101 = 1001 is performed. 
The BitSet combines the siblings with the leaf node of the 
trie to generate a new candidate set. 

3.2.2  GPU Accelerated Frequent Subsequence 
Mining

The candidates are copied to GPU memory from the 
main memory. The support count is calculated for all the 
frequent variable length patterns using bitSets representa-
tion by counting the number of 1s in the bitset on GPU, as 
shown in flow diagram (Figure 4). The CUDA architecture 

Figure 4. GPU implementation of VLASPD.

involves multiple blocks, with each block comprising of 
threads. A thread is a basic unit. GPU processors execute 
threads in the groups of 32, which are called as Warps. 
The vertical lists are kept in 32 bits on multiple GPUs25.

Thus, 32 bits store intersection results. This result is 
parallel computed on GPUs. Finally, Parallel reduction 
algorithm is used for counting the occurrences of number 
of 1s.

3.2.3 Finding Associations on GPU
Matrices are used to manage the task of associations. The 
task of matrix filling is implemented on GPUs as asso-
ciating 1-length subsequence to all possible k-length 
subsequences on GPU1(k∈ 1 to maximum length 
pattern),2-length subsequence on GPU2, k-length subse-
quence on GPUk, and k+1 length subsequence on GPUk+1. 
Thus parallelizing the calculations of associations on GPU 
can be possible. 
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The remaining steps for finding significant associa-
tions and interaction predictions are implemented as per 
VLASPD algorithm7.

3.3  Frequent Patterns using FP-growth 
Algorithm

The apriori algorithm, since it basically works on gener-
ate-and-test approach, first generates the candidates, and 
then tests the frequency of the candidates. The candidate 
generation step makes apriori algorithm complex in terms 
of space as well as time. The support count calculation is 
computationally expensive and involves multiple data-
base scans (I/O expensive). GPU based apriori reduces 
the complexity by parallelizing candidate generation. But 
another recent approach ‘FP-Growth’ provides higher 
performance than GPU based apriori since the candidate 
generation step is completely removed26. 

FP-Growth uses two-step approach to generate the fre-
quent patterns without the generation of candidates. The 
two steps followed are: (i) Build an FP-Tree. (ii) Extract 
frequent patterns from FP-Tree.

3.3.1 FP-Tree Construction
The step reframes the entire protein database into a 
FP-Tree. Two sub steps performed are:

Sub step 1: Scan the protein sequences database(Table 3) 
to find the support count of each amino acid(Table 4). 
The less frequent amino acids are discarded. The remain-
ing frequent amino acids are arranged in order of their 
frequency (Table 5). Consider the example of sequences:

Sub step 2: FP-Tree is constructed as a tree with amino 
acids placed as nodes, each node has a counter associated 

Table 3. Sequences in an example 
database

Sequence id Sequence
S1 ACF
S2 CE
S3 CD
S4 ACE

S5 AD

S6 CD

S7 AD
S8 ACDF

S9 ACD

Table 4. Calculating frequency 
of each amino acid

Item Frequency Priority
A 6 2
C 7 1
D 6 3
E 2 4
F 2 5

Table 5. Amino acids arranged 
in order of their priority

Sequence id Rearranged Sequence
S1 CAF
S2 CE
S3 CD
S4 CAE
S5 AD
S6 CD
S7 AD

S8 CADF

S9 CAD

with it. The initial node is kept as null. FP-Growth reads a 
single sequence at a time and place it on the tree by trac-
ing the path which it matches (Figure 5 Figure 6). The 
sequences with common prefixes share paths, the coun-
ters are incremented.

The FP-tree has less size as compared to the original 
database, since many sequences share has same amino 
acids in them. We can say that FP-Growth compresses the 
database into FP-Tree.

3.3.2 Extracting Frequent Patterns from FP-Tree
For node F, the paths are: {C,A,F} and {C,A,D,F}. Paths 
without prefix are: {C,A:1} and {C,A,D:1}. Frequent set 
generated is: {C,A : 2}>=2. Frequent patterns are: {A,F}
{C,F},{C,A,F}. Similarly, by considering support count as 
2, the frequent patterns are {C,E},{C,A,D},{C,A}.

3.4 Proposed Work
The methodology proposed performs the hybridization 
of the two algorithms, Apriori and FP-Growth algorithm, 
and implements the parallel algorithm on GPU. The 
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Figure 5. (a) FP-Tree after reading sequence 1 (b) FP-Tree 
after reading sequence 2.

Figure 6. Final FP Tree after reading S9.

space and time complexity, and IO access of the existing 
 techniques are challenged.

4. Expected Outcomes
The research project is expected to provide a new archi-
tecture for an efficient prediction of interactions between 
all the possible pairs of protein sequences in the protein 
database with the use of CUDA architecture and GPUs. 
The parallel task on GPU will reduce the time required for 
finding the frequent patterns in proteins, and the associa-
tions among them. Thus the overall implementation time 
of the VLASPD algorithm will be reduced.

5. Summary and Conclusion
Protein Protein Interactions (PPIs) have a major impact 
on the biological processes. Even though, various meth-
odologies have been developed for predicting PPIs, the 
practicality of most existing methods is limited because 
they need information about protein homology or requires 

a tedious task of collecting biological information. In the 
work, we parallelized an existing methodology for PPI 
prediction that used only the information of protein 
sequences and their frequency in the database. The paper 
presents a parallel VLASPD algorithm, which parallelize 
two important steps of VLASPED: Frequent subsequences 
mining and finding the associations between the frequent 
patterns. This parallel method uses highly parallel archi-
tecture of GPU that uses CUDA programming framework 
to improve the performance and efficiency by reducing 
the implementation time.
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