
Abstract
Objectives: To design a new framework to efficiently parallelize the steps of VLASPD algorithm using a hybridized apriori
and fp-growth on GPU; to implement the existing and proposed framework in CUDA;to improve the performance factors
like computational time, memory and CPU utilization.Methods/Statistical Analysis: This paper proposes the acceleration
of Protein-Protein Interactions (PPIs) prediction on Graphics Processing Units(GPUs). A GPU can provide more process-
ing cores and computational power in the same cost as a CPU.Findings: The frequently occurring patterns in the protein
sequences can be used for PPIs prediction.The moving of the approaches from fixed length to variable length lead to com-
putational complexity but also is found to be advantageous.Applications/Improvements:Sequence biology is since being
researched by various computer engineers, the GPUs can be employed for predicting various sequence interactions like
DNA-Proteins, etc. Since the GPU runs the parallel code efficiently, the methodology can be further improved if efficiently
parallelized.

Protein-protein Interaction Prediction using Variable
Length Patterns with GPU

Jeevan Bala, Avinash Kaur* and Parminder Singh

Department of computer Science Engineering, Lovely Professional University, Phagwara - 144411, Punjab, India;
jeevan94.47@gmail.com, avinash.14557@lpu.co.in, parminder.16479@lpu.co.in

Keywords: Parallel VLASPD, Protein Interaction Prediction, Protein Sequences, Variable Length Patterns

1. Introduction
Bioinformatics is the study and understanding of biologi-
cal data with the help of computer science, mathematics,
engineering and statistics. This biological data could be
protein sequences, genomes, nucleotides and many more.
Bioinformatics lets us see life at molecular level with a
clear vision1.A Protein sequence is a chain combination
of amino acids connected by peptide bonds. These amino
acids come together in chains to form a protein. Different
combinations of amino acids would form different pro-
teins but only a handful (~500) of valid combinations is
there which form proteins2. These sequences are too long
and complex to do remember or determine. So, the amino
acid data is fed to a computer system which further gives
out a protein as the output. Large computer databases of
the sequences are kept3.The approach of biological data
processing has now moved to computational biology, the
manual work has been reduced to a large extent and com-
putational researchers has taken place of the scientists
those performing experimental approaches4.

These sequences are important to the structural repre-
sentations since they can be used to predict the behavior
of proteins, like interaction among the proteins with less
complexity5. The sequences are searched for similarities
in them, or co-occurrence of patterns. Various algorithms
have been developed by the researchers, which uses the
concept of ‘k-mers’ to predict the interaction among
the proteins. ‘k-mers’ are fixed length patterns found in
sequences. Forming associations between the frequently
occurring patterns are being efficiently used to predict
the interaction among protein sequences. The recent
algorithm called VLASPD (Variable length Associative
Sequential Pattern Discovery) emphasizes on searching
for frequently occurring ‘variable length patterns’ in the
database, and then finding the associations among them5.
The significant associations then predict the interactions
among the proteins. Although VLASPD provides a new
research but this can be further improved by the efficient
use of data structures.

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(45), DOI: 10.17485/ijst/2016/v9i45/106351, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Protein-protein Interaction Prediction using Variable Length Patterns with GPU

Indian Journal of Science and Technology2 Vol 9 (45) | December 2016 | www.indjst.org

As the technology is advancing and new data is being
researched, there is a need of a fast and reliable computer
system which can do the complex calculations as fast as
possible with as little effort as possible. To achieve this,
a GPU (Graphics processing unit) would be an efficient
choice to base the computer system. A GPU is a special-
ized processor used to accelerate the processing of images
and graphics. A GPU can provide more processing cores
and computational power in the same cost as a CPU.
This is because they have a high parallel structure which
makes them very efficient for processing algorithms and
data in parallel6. The paper also proposes a novel paral-
lel algorithm for frequent patterns mining and forming
associations on GPU.

1.1 GPUs Accelerate Applications
A fairly recent advancement in the field of bioinformat-
ics is the appliance of Graphical Processing Units (GPU)
that uses thousands of cores, and thus increases comput-
ing power as compared to the CPU. Initially planned for
video gaming & graphics, GPUs have turned out to be
capable and adaptable for complex computing applica-
tions. These can be used for general purpose computing
and simulations such as fluid dynamics, rigid-body phys-
ics, and many more3. Modern GPUs are exceptionally
parallelized floating point stream processors(NVIDIA
latest graphic cards can produce 20 GFLOPS for each
watt) which can provide un-pretended performance by
running compute-intensive tasks on GPU, while the rest
of the code still keeps running on the CPU6. GPUs com-
prise of processing elements that are more efficient than
those of parallel CPUs. These Processing Elements(PEs)
are assembled into various multiprocessors that provide
facilities like shared memory6. Figure 1 shows the basic
structure of modern GPU. The number of processing ele-
ments varies in various multiprocessors. Multiprocessor’s
elements perform same operation on the data: thus called
Single Instruction Multiple Thread(SIMT) processors.

The multiple cores embedded in a GPU and SIMD
processing means that GPU has a large number of ALUs
in comparison to CPU. SIMD width(number of working
items processed by GPU thread) over GPU is thus more.

1.2 Compute Unified Device
Architecture(CUDA)

NVIDIA released CUDA in 2007, which is the platform
and the API (Application Programming Interface) that

Figure 1. (a) The diagrammatic view of CPU containing
multiple parallel processing cores, whereas (b) GPUs
contains hundreds of cores.

allows the programmers to use the commonly used lan-
guages like C, C++ to access NVIDIA GPU’s resources.
CUDA architecture, as shown in Figure 2 contains several
blocks, each containing a number of threads. The number
of threads in a block can be chosen by the programmer6.
The block level threads, executing parallel can be called as
Warp. The blocks are grouped into grids. All the blocks in
a grid are of same shape and size. The execution of threads
in a same block is done by same microprocessor, which
can also process other blocks simultaneously.

The proposed methodology aims to design a new
framework to efficiently parallelize the steps of VLASPD
algorithm with GPU.

A method is proposedthat used k-mers to predict the
protein-protein interactions. The method first traversed
the entire protein database to find 3-mers, i.e. all the possi-
ble patterns of amino acids of size three. A pairwise kernel
function checked the similarities between every pair in
the database. Then, the Support Vector Machine(SVM)
was used to distinguish between the proteins that could
interact, and others that could not7.

Another approach isdeveloped for PPI prediction,
which is the first method for successfully predicting pro-
tein interactions by using only sequence information.
This approach uses machine learning techniques for pre-
dictions. The method used s-kernel instead of pairwise
kernel that used s-kernel function instead of pairwise
function. The method differed from that of Beh-Hur’s
method was the kernel used. This method made use of
SVM8. Some authors5 recently claimed that the pat-
terns of variable length in the protein sequences can be
efficiently used to predict the interactions between the
protein sequences. The proposed method involved three

Jeevan Bala, Avinash Kaur and Parminder Singh

Indian Journal of Science and Technology 3Vol 9 (45) | December 2016 | www.indjst.org

achieved 1.8 GCUPS on single and 3.48GCUPs on dual
GeForce 8800 GT GPU while searching Swiss-Prot,
which was 2 to 30 times faster than the previous imple-
mentations on GPU taken for comparison. However, the
usage of Manavski and Valle, while conveying great per-
formance, could not completely exploit the capability of
the hardware.

Manavski algorithm isimproved11. The project claimed
many drawbacks in the previous algorithms, which are
illustrated: Using texture memory of GPU to store query
profile fills it up quickly, thus caused cache misses and
memory delays as a result. Query length larger than 356
caused cache misses.The necessary multiple launches of
kernel due to large number of database sequences to pro-
cess limited grid size also caused latency.

Akoglu algorithm11 used two cached memories on
GPU, texture cache and constant cache. It eliminated the
use of CPU completely. A function using ASCII code table
accessed the score in substitution matrix. Storing the sub-
stitution matrix and query sequence in constant memory
since access to constant memory, made the algorithm
execute faster, the similarity scores were stored in shard
memory, which even made the algorithm faster. The algo-
rithm could thus reduce bottlenecks. The algorithm used
64 threads per block as in case of Manavski algorithm.
SW score in this case was calculated as four cells at a time.
Global memory stored cell calculations simultaneously as
updated.

CUDASW++ versions for protein database search
onto NVIDIA GPUs is proposed12–14. These proved to be
one of the key undertakings for implementation of the
Smith-Waterman algorithm on GPUs, the source code of
CUDASW++ is openly accessible.

CUDASW++ 1.012 performed all the Smith-
Waterman calculations on GPUs by using the multiple
G200 (and higher) GPUs for performance enhancement.
The sequences of length less than threshold length were
aligned using intertask kernel (uses single thread to align).
And, those sequences of length greater than threshold
were aligned using intratask kernel (used thread block to
compute the alignment). The intratask method imposed
communication between the threads. Intertask kernel
could achieve better performance due to high parallelism.
The average performance of intertask kernel was approxi-
mately 17 GigaCUPS(GCUPs) while that of intratask
kernel was 1.5 GCUPs when same query was compared
on same database sequence on the Tesla C1060. This per-
formance dropped with increase in threshold.

Figure 2. CUDA hierarchy.

steps. The first involved the identification of frequently
occurring patterns of ‘variable sizes’. The first step used
apriori algorithm. The second step finds out all the possi-
ble associations between all the possible pairs of frequently
identified frequent patterns. The third step involved the
identification of the significant associations. The final step
after this step predicted the interactions between the pro-
tein sequences in the database.

The literature review included some papers on
acceleration of sequence alignments, those using Smith
Waterman algorithm on GPU. These are included in this
section.

SW algorithm9 is implemented an SW algorithm
on graphics card for the first time by using graphic API
(OpenGL + GLSL) to gain high performance. The align-
ment method ran 9 to 15 times faster than other database
searches like OSEARCH3 and SSEARCH3. The approach
used was: First copy the query and database sequences as
textures to GPU memory, then operate the score matrix
in an anti-diagonal manner and a pixel is drawn, which
executes a pixel shader, which calculates score for the cell.
The results act as input in next pass. The method offered
execution in two modes, i.e. with and without trace back.
The version with no trace back showed performance as
241 MCUPS, 178 with trace back, 120 GCUPS was the
performance on CPU.

The first usage of CUDA10 is implemented for aligning
protein sequences, ‘SW-CUDA’. The complete alignment
task was performed by each of the GPU processing ele-
ments, rather than processing as a single matrix. Major
advantage gained here was the reduced memory accesses,
since no communication between the processing ele-
ments was required. The method generated a query
profile, which was a query specific substitution matrix
(query elements taken as columns),generated once for
the entire database. The access to query profile was
much less than that of substitution matrix. SW-CUDA

Protein-protein Interaction Prediction using Variable Length Patterns with GPU

Indian Journal of Science and Technology4 Vol 9 (45) | December 2016 | www.indjst.org

Work is published13 on protein database search on GPU
at the same time as that of CUDASW++, they proposed
how to utilize shared memory to enhance the performance
of the Smith-Waterman algorithm. The project did not
implement intra-task parallelism for the long sequences.
The results were compared to parallel implementation
of cell processor14, which provided highest performance
of Smith-Waterman approximately 9 GCUPs on single
CPU. The measured performance of Ligowski algorithm
on NVIDIA 9800 GX2 was 14.5 GCUPS, which was thus
measured as the leading performance among those algo-
rithms of those times. The paper claimed its performance
factor roughly be double of Farrar implementation15 and
was 50 percent more than the previous version of same
algorithm on Sony PlayStation314.

Parallel scan algorithm is porposed16 and claimed
that the classical diagonal parallelism undergoes non-
uniform parallelism distribution and the memory access
is difficult. Thus, memory coalescing is less advantageous
in that case. They aimed to fully parallelize the process-
ing of cells in a row of matrix, for which, parallel scan
was performed to update the cells. In order to impose
the data dependence between the cells in the same row,
they performed the parallel scan for updating the values
of the cells, which required high cost for synchroniza-
tion between threads and thread blocks. The parallel scan
algorithm could also be employed in intratask kernel of
CUDASW++.

An enhanced version of CUDASW++ is produced17,
and named it as CUDASW++ 2.0, 2010, enhanced the
performance of CUDASW++ 1.0 based on SIMT abstrac-
tion. The performance factor was increased to 17 GCUPs
on single NVIDIA GeForce 280 and 30 on dual NVIDIA
GeForce GTX 295.

The improvement in backtracking procedure is per-
formed18. The method used four Boolean matrices to
store the directions of backward moves during backtrack-
ing process. The method can be applied to CUDASW++,
to improve the performance. The results were not as good
as CUDASW2.0.

Intrataskparallelizationis used16 and multiple GPUs to
propose a CUDA based SW algorithm, CUDA-SSCA\#1.

Another algorithm (HKA algorithm) is proposed19
by using new sequence database organization and sev-
eral optimizations on GPU to reduce memory accesses.
Method pre-converted the sequences into the for-
mat that was easy to access. The sequences were first
sorted, and then sequence sets and sequence groups

were formed, which were formed by concatenating
the sequences. The data read writes were reduced to
reduce the memory access, thus increasing the per-
formance. The algorithm was 1.13 times better than
CUDASW++2.0.

Another attempt is made to improve CUDA++. The
authors20 proposed a tiling approach for performance
enhancement of the intratask kernel of CUDASW++.
The paper called attention to a few essential configuration
issues for tuning execution, including how to ensure that
registers are used, rather than global memory, even with
exceeded capacity. The improved intra-task kernel when
employed into CUDASW++ increased the average per-
formance by 4 GCUPs or 25%.

CUDASW++ 3.0 used CUDA C++21 and PTX low
level computing constructs, which focused on GPUs
build around Kepler building design. It performed simul-
taneous CPU and GPU calculations to speed up the SW
algorithm, by dynamically distributing the workload
among them to balance the execution times. The method
implemented Multithreading and SSE based instruc-
tions are implemented on CPU side and PTX SIMD
instructions were implemented on GPU to parallelize the
Smith-Waterman algorithm.

Another method isproposedcalled CUDA-SWf (an
ITE technique)22 to compare a query sequence to mul-
tiple database sequences, that used Frequency Distant
Filtration Scheme(FDFS) to filter unnecessary sequences
at run time. FDFS used GPU to first calculate the fre-
quency vectors for the query and for the database
sequences. Secondly it calculates the frequency distance
between the queries and database sequences. Thirdly the
sequences that are needed to be compared are transferred
from to GPU to CPU. Finally, sorting of sequences takes
place in CPU, and the sorted sequences are retransmitted
to GPU for SW computations.

An enhanced version of CUDA-SWf as CUDA-SWfr
is introduced23. The paper performed protein database
search on CPU-GPU collaborative system that used
Intratask parallelization technique and improvedthe
statistical measure and efficiency of the previous
 algorithm.

A method isintroducedfor efficiently mapping short
query sequences. The24algorithm focused on performance
enhancement by making the database organization more
effective; the GPU threads were increased for every data-
base sequence; and minimizing the memory access to
avoid bottlenecks.

Jeevan Bala, Avinash Kaur and Parminder Singh

Indian Journal of Science and Technology 5Vol 9 (45) | December 2016 | www.indjst.org

2. Scope of the Study
Proteins as complex structures are difficult to understand
without the deep knowledge of biology. Many researches
has been made that considers the sequence data of pro-
tein to predict the behavior, structure and interactions
between the proteins sequences stored in the databases.
Various computational techniques have also been dis-
cussed by various researchers to enhance the interaction
prediction process. An important process among all is the
prediction of interactions between proteins by analyzing
the sequence data. Although various efforts have been
made to develop an efficient methodology for predicting
the interactions, the efficiency, and performance is still a
challenge for computer engineers and biologists.

Use of sequences has been done in various researches
for PPI prediction. ‘K-mers’ is the example of such appli-
cation. Although the approach has been made to move
from k length patterns comparison and alignment to
variable length patterns, but efficiency is still the issue.
Researchers have scope to parallelize the sequence align-
ments and the prediction of interactions on high speed
parallel organized architecture of GPU.

3. Methodology proposed

3.1 Methodology Used in Existing
Algorithm

3.1.1 Apriori Algorithm
Apriori algorithm is a classical algorithm designed to
work for databases containing sequence data like transac-
tions made by customers, sequence database and others.
The algorithm is used to find out the frequently occur-
ring item sets/patterns of proteins in the database based
on the fact that the item sets of frequent item sets are also
frequent. The frequently occurring item sets of size K can
be combined to form a K+1 size frequent item set.

3.1.2 Forming Associations between Frequent
Subsequences

For every two frequent subsequences(patterns), the four
possible combinations are made. i.e. the presence and
absence of the subsequences can be: < p1present, p2pre-
sent >;< p1present, p2absent >;< p1absent, p2present>;<
p1absent, p2absent >. Where p1 represents the subse-
quence in protein sequence1 and p2 is the subsequence

in sequence2. The values of the cells in Table 1 are
 incremented for all combinations of sequence pairs. These
associations are shown in Table 1.

Although VLASPD provides efficient prediction of
interactions among proteins. But using apriori algo-
rithm is expensive in terms of both memory and time,
and become even more complex when the candidate
subsequent size increases. The research proposal tends to
accelerate the task of finding variable size substrings in
the sequences and finding the associations between all the
possible pairs.

3.2 Parallel VLASPD(GPU Accelerated
Frequent Mining and Associations
Mining)

The trie data structure and vertical Bitset representation
approach is used to reduce the memory consumption
and the GPU implementation enhances the performance.
These have been explained.

3.2.1 TrieTree and Vertical Representation of
Sequence Sets

While adding an item to k-length item set to form k+1-
length item set, it is considered that the portion k is same
in the item sets (Figure 3). The new node is added to leaf
nodes in Trie data structure by placing the sibling as the
child node of the leaf node. Thus the sequences can be
places as the hierarchal tree structure.

Consider the four sequences, S1-ACDEF, S2-CDEFG,
S3-DEGH and S4-ACDEF. These sequences can be rep-
resented by two approaches: Horizontal and Vertical
approach. Most of the recent storage techniques make
use of vertical approach to store the transactions along
with the items belonging to the transaction.Table 2 shows
the use of vertical approach, i.e. the sequence numbers
(Sequence Sets) corresponding to each particular amino
acid are written in front of it. BitSet is a set of n bits, where
n is the number of sequences in the consideration, where

Table 1. Forming associations between patterns

Possible Combinations Interactions No Interactions
< p1, p2 >
< p1, p2 >
< p1, p2 >
< p1, p2 >

Protein-protein Interaction Prediction using Variable Length Patterns with GPU

Indian Journal of Science and Technology6 Vol 9 (45) | December 2016 | www.indjst.org

Figure 3. Trie representation of items (amino acids) for
finding all possible variable length patterns in a protein.
ACEFG

Table 2. Vertical representation, bitset

Amino acid alphabet BitSet< S1; S2; S3; S4 >
A 1001
C 1101
D 1111
E 1111
F 1111
G 0110
H 0010

AC 1001
AD 1001
AE 1001
AF 1001

0 represents the occurrence and 1 represents no occur-
rence of the amino acid in the particular sequence. While
moving from k to k+1 size item set, bitwise AND opera-
tion A AND C = 1001 AND 1101 = 1001 is performed.
The BitSet combines the siblings with the leaf node of the
trie to generate a new candidate set.

3.2.2 GPU Accelerated Frequent Subsequence
Mining

The candidates are copied to GPU memory from the
main memory. The support count is calculated for all the
frequent variable length patterns using bitSets representa-
tion by counting the number of 1s in the bitset on GPU, as
shown in flow diagram (Figure 4). The CUDA architecture

Figure 4. GPU implementation of VLASPD.

involves multiple blocks, with each block comprising of
threads. A thread is a basic unit. GPU processors execute
threads in the groups of 32, which are called as Warps.
The vertical lists are kept in 32 bits on multiple GPUs25.

Thus, 32 bits store intersection results. This result is
parallel computed on GPUs. Finally, Parallel reduction
algorithm is used for counting the occurrences of number
of 1s.

3.2.3 Finding Associations on GPU
Matrices are used to manage the task of associations. The
task of matrix filling is implemented on GPUs as asso-
ciating 1-length subsequence to all possible k-length
subsequences on GPU1(k∈ 1 to maximum length
pattern),2-length subsequence on GPU2, k-length subse-
quence on GPUk, and k+1 length subsequence on GPUk+1.
Thus parallelizing the calculations of associations on GPU
can be possible.

Jeevan Bala, Avinash Kaur and Parminder Singh

Indian Journal of Science and Technology 7Vol 9 (45) | December 2016 | www.indjst.org

The remaining steps for finding significant associa-
tions and interaction predictions are implemented as per
VLASPD algorithm7.

3.3 Frequent Patterns using FP-growth
Algorithm

The apriori algorithm, since it basically works on gener-
ate-and-test approach, first generates the candidates, and
then tests the frequency of the candidates. The candidate
generation step makes apriori algorithm complex in terms
of space as well as time. The support count calculation is
computationally expensive and involves multiple data-
base scans (I/O expensive). GPU based apriori reduces
the complexity by parallelizing candidate generation. But
another recent approach ‘FP-Growth’ provides higher
performance than GPU based apriori since the candidate
generation step is completely removed26.

FP-Growth uses two-step approach to generate the fre-
quent patterns without the generation of candidates. The
two steps followed are: (i) Build an FP-Tree. (ii) Extract
frequent patterns from FP-Tree.

3.3.1 FP-Tree Construction
The step reframes the entire protein database into a
FP-Tree. Two sub steps performed are:

Sub step 1: Scan the protein sequences database(Table 3)
to find the support count of each amino acid(Table 4).
The less frequent amino acids are discarded. The remain-
ing frequent amino acids are arranged in order of their
frequency (Table 5). Consider the example of sequences:

Sub step 2: FP-Tree is constructed as a tree with amino
acids placed as nodes, each node has a counter associated

Table 3. Sequences in an example
database

Sequence id Sequence
S1 ACF
S2 CE
S3 CD
S4 ACE

S5 AD

S6 CD

S7 AD
S8 ACDF

S9 ACD

Table 4. Calculating frequency
of each amino acid

Item Frequency Priority
A 6 2
C 7 1
D 6 3
E 2 4
F 2 5

Table 5. Amino acids arranged
in order of their priority

Sequence id Rearranged Sequence
S1 CAF
S2 CE
S3 CD
S4 CAE
S5 AD
S6 CD
S7 AD

S8 CADF

S9 CAD

with it. The initial node is kept as null. FP-Growth reads a
single sequence at a time and place it on the tree by trac-
ing the path which it matches (Figure 5 Figure 6). The
sequences with common prefixes share paths, the coun-
ters are incremented.

The FP-tree has less size as compared to the original
database, since many sequences share has same amino
acids in them. We can say that FP-Growth compresses the
database into FP-Tree.

3.3.2 Extracting Frequent Patterns from FP-Tree
For node F, the paths are: {C,A,F} and {C,A,D,F}. Paths
without prefix are: {C,A:1} and {C,A,D:1}. Frequent set
generated is: {C,A : 2}>=2. Frequent patterns are: {A,F}
{C,F},{C,A,F}. Similarly, by considering support count as
2, the frequent patterns are {C,E},{C,A,D},{C,A}.

3.4 Proposed Work
The methodology proposed performs the hybridization
of the two algorithms, Apriori and FP-Growth algorithm,
and implements the parallel algorithm on GPU. The

Protein-protein Interaction Prediction using Variable Length Patterns with GPU

Indian Journal of Science and Technology8 Vol 9 (45) | December 2016 | www.indjst.org

Figure 5. (a) FP-Tree after reading sequence 1 (b) FP-Tree
after reading sequence 2.

Figure 6. Final FP Tree after reading S9.

space and time complexity, and IO access of the existing
 techniques are challenged.

4. Expected Outcomes
The research project is expected to provide a new archi-
tecture for an efficient prediction of interactions between
all the possible pairs of protein sequences in the protein
database with the use of CUDA architecture and GPUs.
The parallel task on GPU will reduce the time required for
finding the frequent patterns in proteins, and the associa-
tions among them. Thus the overall implementation time
of the VLASPD algorithm will be reduced.

5. Summary and Conclusion
Protein Protein Interactions (PPIs) have a major impact
on the biological processes. Even though, various meth-
odologies have been developed for predicting PPIs, the
practicality of most existing methods is limited because
they need information about protein homology or requires

a tedious task of collecting biological information. In the
work, we parallelized an existing methodology for PPI
prediction that used only the information of protein
sequences and their frequency in the database. The paper
presents a parallel VLASPD algorithm, which parallelize
two important steps of VLASPED: Frequent subsequences
mining and finding the associations between the frequent
patterns. This parallel method uses highly parallel archi-
tecture of GPU that uses CUDA programming framework
to improve the performance and efficiency by reducing
the implementation time.

6. References
 1. Luscombe NM, Greenbaum D, Gerstein M. What is bioin-

formatics? A proposed definition and overview of the field.
Methods Information Medical. 2001; 40(4):346–58.

 2. Kidera A, Konishi Y, Ooi T, Scheraga HA. Relation between
sequence similarity and structural similarity in proteins.
Role of important properties of amino acids.Journal of
Protein Chemistry.1985; 4(5):265–97.

 3. Pearson WR. Searching protein sequence libraries:
Comparison of the sensitivity and selectivity of the Smith-
Waterman and FASTA algorithms.Genomics. 1991;
11(3):635–50.

 4. Fogg CN, Kovats DE. Computational Biology: Moving into
the future one click at a time. PLOS Computing Biology.
2015; 11(6).

 5. Hu L, Chan K. Discovering variable-length patterns in pro-
tein sequences for protein-protein interaction prediction.
IEEE Transaction on Nanobioscience. 2015; 14(4):409–16.

 6. Luebke D, Humphreys G. How GPUs work. Computer
(Long Beach Calif). 2007; 40(2):96–100.

 7. Ben-Hur A, Noble WS. Kernel methods for predicting pro-
tein–protein interactions.Bioinformatics. 2005; 21(suppl
1):38–46.

 8. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K. Predicting
protein–protein interactions based only on sequences
information.Proceeding of National Acadamy Science.
2007; 104(11):4337–41.

 9. Liu Y, Huang W, Johnson J, Vaidya S. GPU accelerated
smith-waterman. Computational Science–ICCS 2006;
2006. p. 188–95.

10 Manavski SA, Valle G. CUDA compatible GPU cards as effi-
cient hardware accelerators for Smith-Waterman sequence
alignment.BMC Bioinformatics. 2008; 9(2):1–9.

11. Striemer GM, Akoglu A. Sequence alignment with GPU:
Performance and design challenges. 2009 IPDPS IEEE
International Symposium on Parallel and Distributed
Processing; 2009. p. 1–10.

Jeevan Bala, Avinash Kaur and Parminder Singh

Indian Journal of Science and Technology 9Vol 9 (45) | December 2016 | www.indjst.org

12. Liu Y, Maskell DL, Schmidt B. CUDASW++: Optimizing
Smith-Waterman sequence database searches for CUDA-
enabled graphics processing units. BMC Research Notes.
2009; 2(1):73.

13. Ligowski Ł, Rudnicki W. An efficient implementation of
Smith Waterman algorithm on GPU using CUDA, for
massively parallel scanning of sequence databases. 2009
IPDPSIEEE International Symposium on Parallel and
Distributed Processing; 2009. p. 1–8.

14. Rudnicki WR, Jankowski A, Modzelewski A, Piotrowski
A, Zadrożny A. The new SIMD implementation of the
Smith-Waterman algorithm on Cell microprocessor.
FundamInformaticae. 2009; 96(1–2):181–94.

15. Farrar M. Striped Smith–Waterman speeds database
searches six times over other SIMD implementations.
Bioinformatics. 2007; 23(2):156–61.

16. Khajeh-Saeed A, Poole S, Perot JB. Acceleration of the
Smith–Waterman algorithm using single and multiple
graphics processors. Journal of Computational Physics.
2010; 229(11):4247–58.

17. Liu Y, Schmidt B, Maskell DL. CUDASW++ 2.0: enhanced
Smith-Waterman protein database search on CUDA-
enabled GPUs based on SIMT and virtualized SIMD
abstractions. BMC Research Notes. 2010; 3(1):93.

18. Blazewicz J, Frohmberg W, Kierzynka M, Pesch E,
Wojciechowski P. Protein alignment algorithms with an
efficient backtracking routine on multiple GPUs. BMC
Bioinformatics. 2011; 12(181):1–17.

19. Hasan L, Kentie M, Al-Ars Z. GPU-accelerated protein
sequence alignment. Engineering in Medicine and Biology

Society, EMBC, Annual International Conference of the
IEEE; 2011. p. 2442–6.

20. Hains D, Cashero Z, Ottenberg M, Bohm W, Rajopadhye
S. Improving CUDASW++, a parallelization of Smith-
Waterman for CUDA enabled devices. IEEE International
Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW); 2011. p. 490–501.

21. Liu Y, Wirawan A, Schmidt B. CUDASW++ 3.0: accelerat-
ing Smith-Waterman protein database search by coupling
CPU and GPU SIMD instructions. BMC Bioinformatics.
2013; 14(1):117.

22. Lee ST, Lin CY, Hung CL. GPU-based cloud service for
smith-waterman algorithm using frequency distance filtra-
tion scheme. Biomed Research International. 2013; 2013:8.

23. Liu Y, Hong Y, Lin C-Y, Hung C-L. Accelerating Smith-
Waterman Alignment for protein database search using
frequency distance filtration scheme based on CPU-GPU
collaborative system. International Journal of Genomics.
2015; 2015:12.

24. Houtgast EJ, Sima VM, Bertels K, Al-Ars Z. An FPGA-based
systolic array to accelerate the BWA-MEM genomic mapping
algorithm. International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS);
IEEE. 2015. p. 221–7.

25. Huang L, Wu C, Lai L, Li Y. Improving the mapping of
 Smith-Waterman sequence database searches onto CUDA-
enabled GPUs. BioMed Research International. 2015; 2015:10.

26. Fang W, Lu M, Xiao X, He B, Luo Q. Frequent itemset
mining on graphics processors. Proceedings of the fifth
international workshop on data management on new hard-
ware. ACM; 2009. p. 34–42.

