
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(46), DOI: 10.17485/ijst/2016/v9i46/106918, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Review of UML Model Retrieval Approaches
Alhassan Adamu and Wan Mohd Nazmee Wan Zainon*

School of Computer Sciences, Universiti Sains Malaysia,
Penang - 11800, Malaysia; kofa062@gmail.com, nazmee@usm.my

Keywords: Artefacts, Models Matchings, Model Retrieval, Software Reuse, UML Models

Abstract
The objective of this review is to obtain an overview of the current state of the art of the existing approaches in matching
and retrieval of UML diagrams. The paper presents a synthesis of key characteristics of the current available approaches
of UML-based reuse, compare their matching and retrieval techniques identified their commonalties and differences. A
number of related research papers where examined and categorized based on the type of approach they adopt. The review
resulted in the identification of four main categories of UML models matching and retrieval: 1. Information retrieval, 2. Case-
based reasoning, 3. Ontology-based, and 4. Structured based approach. A comprehensive overview of these approaches is
presented. The findings of this review suggest the further research and practice in UML models reuse.

1. Introduction
There are three most important phases software devel-
opment: analysis, design, and implementation. In
the analysis phase, software developers analyze user’s
requirements and identified what the proposed system
should do. In the design phase, detailed specification of
how the software should perform its tasks is developed;
at this stage the developer translates user requirements
into a real world system, with a greater emphasis on
any possible technical hurdles. Finally, throughout the
implementation phase, programmers implement the new
system based on the functionalities identified during the
design phase. The choice of a programming language
depends largely on the expertise of the programmers.
Software engineers, without effective management, can
find themselves re-inventing these software develop-
ment processes. It is very possible to create new software
from the beginning while similar software was developed
before. In most engineering disciplines, systems are built
by cloning existing components that is used in other sys-
tems rather than building them from scratch. But it is not
the case in software engineering, which has often focused
more on original development. This has resulted in dupli-
cated software artifacts, increased maintenance costs

and the ineffective use of specialists. Software reuse was
introduced to counter this inefficiency with a paradigm of
identifying existing software system to build new system
rather than building it from scratch1.

Software reuse promotes accelerated development,
reduces process risk, utilizes specialists effectively, reduces
development time, improves productivity and increases
the overall quality of software products2. However, it
does suffer from a dearth of supporting tools, increases
maintenance costs, the not invented here syndrome, a
unavailability of reusable component libraries, the addi-
tional cost of making components reusable, and the cost
of reusing such components2,3.

Software reuse can be categorized into deliberate
reuse and accidental reuse. In deliberate reuse, compo-
nents are purposely developed to be reused in the future;
but many organizations are unwilling to outlay this initial
cost since there is no guarantee that a developed compo-
nent can be use in the future. In contrast, accidental reuse
is easier because developers only come to the conclusion
that a past component is reusable when it is found worthy
of incorporating into a new system3,4.

There are many areas of software reuse, it includes past
successful software requirements, software designs, soft-
ware code, test cases, and documentation. Source code

mailto:kofa062@gmail.com

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 2

A Review of UML Model Retrieval Approaches

reuse is the most common type of reuse. However, it is
not the most efficient place for reuse to occur5. The reuse
of design is a more complex and demanding task because
the product of design is often intangible, and intimately
linked to the experience and expertise of individual soft-
ware engineers6.

During system development, design plays a critical
role in ensuring the quality of the software system. Designs
are normally represented using models/diagrams and
capture the development concerns of a particular prob-
lem domain. Successful designs can be reused to develop
other systems. This paper reviews the existing work on
the reuse of past designs represented in Unified Modeling
Language (UML). Section 2 of this paper describes the
background of software retrieval in the context of this
work. Section 3 discusses the various techniques of UML
diagrams matching and retrieval. Section 4 covers the
query formulation and Section 5 presents the method of
evaluating retrieval methods. Finally, the conclusion is
presented in Section 6.

2. Software Retrieval
Matching and retrieval of software components are

considered to be the main building blocks for software
reuse. While the reuse of UML diagrams is becoming
popular in the software engineering community, find-
ing and retrieving appropriate UML diagrams remains a
challenging task.

Previous software arte facts are kept in software library
or repository for later use. Locating components within
the repository is essentially a search problem because of
the increase of repository size.

There are four phases involve in reusing existing
components: representation, retrieval, adaptation and
integration4,7. In the representation stage, the user pres-
ents a new software component query for comparison.
During the retrieval stage, software components that cor-
respond to user query are shortlisted and ranked based on
defined similarity metric. Similarity metric is a function
that returns degree of similarity between two software
artefacts8. During adaptation, components with minimal
adaption cost are selected and modified to suit the new
requirement. Finally, the new components are integrated
into the repository for future reuse9.

3. Retrieval Approaches
This section discusses the UML diagrams retrieval
approaches based on the approaches. Each work is cat-
egorized based on the type of approach adopted as
follows: Information Retrieval, Case-Based Reasoning
Approach (CBR), Ontology Approach and Structure-
based Approach.

3.1 Information Retrieval
Information Retrieval (IR) is one of the earliest approaches
use for UML models retrieval. IR is a technique for com-
paring and finding documents that meet the information
needs from a collection of documents10. The data stored
and manipulated by IR system can be in any form such
as textual, video and audio or multimedia documents.
However, IR is also applicable to UML diagrams retrieval
especially if the diagrams contained some considerable
amount of text (e.g. use case description)11.

The similarity between requirement speciation in
query and repository is computed using IR12. The require-
ments specification were in the form of use case flow
of events. The similarity is computed by the number of
matching use case events flows in query and repository.
Similar events flows from the same or similar domain are
grouped together to form clusters based on their lexical
meaning of words. The clustering process reduces the
complexity of matching process considering a large num-
ber of different events flows in the domain model. Each
of the use case’s event flows is represented as a multi-
dimensional vector space model, in which the dimension
represent the number of events in a particular cluster. The
similarity of two requirement specifications is computed
using cosine distance measure.

Information retrieval technique is applied for scenario
management reuse8. Each of the scenarios is represented
as a set of attributes: goals, authors, events; actors, actions,
and episodes. The similarity between two scenarios is
computed as the sum common attributes values in the
attribute list divided by the sum of the sizes of each attri-
bute list.

An approach of retrieving software projects from
repository based on faceted classification scheme using
IR was proposed13. Models are classfied in to six perspec-
tives: domain, abstraction, responsibilities, collaborations,
design views, and asset types. Each of the facets describes

Indian Journal of Science and Technology 3Vol 9 (46) | December 2016 | www.indjst.org

Alhassan Adamu and Wan Mohd Nazmee Wan Zainon

one aspect of the component and also capture the com-
ponent functional requirements. During retrieval the
similarity between query and repository models are com-
puted using conceptual closeness and discrepancy reation.
The conceptual cloness computes the similairty between
models from different facets represented by taxonomy.
The discrepancy ratio measures the degree of commonal-
ity of descriptor terms in query and repository models.

A framwework of retriving UML artifacts in two
stages is describe14: 1. Indexing, in this stage UML
diagrams elements (e.g. classes, attributes, and collabora-
tion) in XMI format are extracted and stored in relational
database, 2. In the retrieval stage, the similarity between
UML diagrams is computed using query inclusion and
query similarity. The query inclusion searches through
the repository using a SELECT statement to retrieve only
those diagrams that are defined in the query; this includes
the sub-artefacts and relationships between them. Query
similarity consists of topological and semantic similarity
of the diagrams. The topological similarity is computed
based on the type of relationships found in query and
repository diagrams. The relationships are represented by
vector space in which the dimension of the vector space
represents the number of relationships in query and
repository. The similarity between UML diagrams was
calculated as the Euclidian distance of two vector space.
Finally, the semantic similarity is computed based on the
degree of overlap of terms occurring in query and reposi-
tory models together with the distance between terms
occurring in relationships within a thesaurus.

3.2 Case based Reasoning Approach
A decade ago, researchers have explored the use of case
based reasoning in UML reuse. Case Based Reasoning
(CBR) is an analogical paradigm whereby new problems
are solved by adopting solutions of similar past prob-
lems15. CBR is an experienced driven paradigm, in which
previous experiencesare stored as cases in a case library.
Cases in CBR are composed of problem and their solu-
tions. CBR is composed of five parts: situation and its
goals; solution and its source; the result of carrying out
the solution; clarification of the result and lesson learned
from the solution16.

CBR was combined with a WordNet lexical ontology
to retrieve previous software design cases in three stages:
retrieval, verification, and retention stage. A case here
refers to a previous design experience stored in a case-

base library. Class diagrams are stored as cases in a case
library. During retrieval three kinds of objects are con-
sidered: Packages, classes, and interfaces. The retrieval
takes place in two stages: the first stage is computationally
inexpensive otherwise known as pre-filtering based on
WordNet relations to index the case library. The second
stage is computationally expensive stage; the similarity
between case in query and case-base is computed, similar
cases are returned and ranked based on their similarity
values. The latter is more accurate for object selection and
ranking. The most similar cases is adapted for reuse in the
new project. In verification stage, cases are checked for
consistency and coherence to assess their performance
and characteristics. Finally, at the retention phase, the
system decides either the new case should be stored in the
case library or not. Cases that are similar to existing cases
are discarded as redundant6,17-19.

Class diagrams were retrieved from case library based
on the number of matching elements (class, relationship,
direction, and multiplicity) found in the diagrams20. Class
diagrams are retrieved using CBR and a graph match-
ing algorithm in two stages. In the first stage, classes are
assigned a weighted function reflecting their degree of
influence in a class diagram. With the CBR the similar-
ity between classes in the query and those in case library
is computed. This stage is computationally inexpensive.
In the second stage, the query and repository classes are
converted to a weighted undirected graph with nodes
denoting classes and edges represent the relationships
between classes. With the aid shortest path algorithm the
match between a pair of class diagrams was calculated as
the distance of their shortest path length.

In ReDSeeDs projects previous software requirements
and solutions are stored as cases in case library. The
requirements are written using Requirement Specification
Language21 in three forms: scenario based, structure based
and model based. During the retrieval, new requirement
is compared with the previous requirements stored in
the library. The requirements are used as the indexes that
link to corresponding cases (designs, code) in the case
library22. The most similar requirements are returned for
adaptation. During adaptation, a transformation engine
generates new interaction diagrams, business logic and
application logic code from the new requirements23.

An approach of retrieving previous use case dia-
grams from repository using CBR was presented24. The
retrieval method is based on two dimensions: use case

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 4

A Review of UML Model Retrieval Approaches

and actor dimension, and relationships dimension. The
use case and actor dimension consist of use case, actor,
and system boundary components represented as text-
based information. During retrieval, the words found
in query and repository are extracted and formed a
searched dictionary. The similarity is computed as the
average of the number of matched words found between
query and repository use case diagrams. In the relation-
ships dimension, the similarity is calculated based on
three subcomponents: the relationship type, navigator,
and multiplicity relationship. Each of the relationships is
assigned a weighted value indicating the influence of the
relationship in the diagram. Finally, the actual degree of
similarity is returned by the CBR engine, and the appro-
priate diagrams are selected for reuse.

3.3 Ontology based Approach
Ontology has a good way of specifying concepts and the
relationships among those concepts, especially those con-
cepts that are in the same or similar domain. Ontologism
are ways in which information are organized to promote
sharing and reuse of such information.

A WordNet specific ontology is used to classify use
case event flows into lexical and semantic similarity12.
Similar event flows in the domain are grouped into clus-
ters by their names. The event flows in queries and the
repository were represented in a multi-dimensional vec-
tor space, in which the dimension denotes the number of
events in a cluster. Finally, the distances between the vec-
tors are measured to determine the degree of similarity
between the two requirement specifications.

Lexical Semantic ontology such as WordNet can be
used to determine the meaning of words in a models
diagrams. WordNet is being applied in combination of
another approach such as CBR6 and IR11,12,25 to improve
the retrieval results.

Similar UML diagrams were retrieved using two types
of ontologies: Application ontology and domain ontol-
ogy. The application ontologies measure the semantic
similarity between UML class diagrams based on the
relationships between their classifier and identifiers. The
domain ontology measures the semantic relationship
between classifier names in the class diagrams. During
retrieval, each UML class diagrams in the repository are
indexed and characterized according to application ontol-
ogy. The overall similarity between query and repository

diagrams is calculated as the weighted sum of both appli-
cation and domain ontologies similarities26.

 Information about UML use case diagrams are stored
in Ontology Web Language (OWL) database. During
retrieval users query individual OWL entries in the data-
base and retrieve the associated use case diagrams in XMI
forms based on user defined parameters. The user defined
parameters could restrict the search space to avoid the
unwanted query expansion. The information in the
parameters are interpreted as a query over OWL ontology
and stored in an MYSQL database. The tool searches the
individual use case diagrams that match the query and
return the final result in XMI format for reuse27.

Many other studies have adopted WordNet ontologies
to compute the similarity between UML diagram28-30 to
determine the semantic similarity between class names,
attributes, names, operations in class diagrams respec-
tively.

Semi-automatic approach to adapt UML activity dia-
grams to create new use case diagrams is proposed31. The
information regarding use case diagrams, activity dia-
grams and a class diagrams is stored in a model repository.
Consequently, the similarity of two use cases is computed
based on their semantic similarity. The semantic similar-
ity is computed in two aspects: the similarity of the sole
use cases and the similarity of the context in which the
use case exist. The measure of the semantic similarity is
based on WordNet. Finally, the semantic similarity of two
use cases is computed as the weighted sum of their simi-
larity values.

3.4 Structural-based Approach
Structural-based similarity considers the structural repre-
sentation of models to in query and repository. There are
two approaches for computing the similarity of structured
models: Graph-based and Description Logic (DL)25,32. The
similarity of two models is computed by comparing the
vertices and arcs in the equivalent graphical representa-
tion of the models. Both of these approaches focus on the
models structural representation and compare subgraph
using taxonomic comparisons of model elements and
their relationships to other elements. Normally vertices
represent the models name (e.g. class names), and the arc
denotes the relationships between UML models elements.

The similarity computation is based on the estimation
of the conceptual distance between terms in the query
and the terms in repository models13.

Indian Journal of Science and Technology 5Vol 9 (46) | December 2016 | www.indjst.org

Alhassan Adamu and Wan Mohd Nazmee Wan Zainon

Similarity between sequence diagrams was computed
using SUBDUE34 graph matching algorithm. Sequence
diagrams are represented as conceptual graphs in which
the object names in the sequence diagrams represents
vertices, and the relationships between the diagrams
(messages) represent the edges of the graph33. The
SUBDUE algorithm find the similarity between the graph
by comparing the substructures of sequence diagrams in
query and repository.

A two-stage framework to retrieve UML artifacts from
repository is proposed7. In the first the similarity between
class diagrams is computed using Structured Mapping
Engine (SME). SME is an analogical reasoning mapping
techniques which allows mapping of knowledge from one
domain to another by considering the communalities
between objects in the domain regardless of the objects
involved in the relationships. The subset of the repository
UML projects are selected for subsequent comparison, the
first stage is considered as the pre-filtering stage. In the
second stage sequence diagrams in the shortlisted models
are converted to Message-Order-Graph (MOOGs), where
nodes denote the location where events occur (message
send or received) in sequence diagrams and the edges
denote the flow of events between objects and the flow
of time inside each object. The similarity between two
MOOGs is computed based on the number of nodes and
edges in each of the graph using graph matching algo-
rithm.

A framework for retrieving class diagrams using
genetic algorithm35. UML class diagrams are converted to
graphs, in which classes denote the nodes of the graph and
the relationships between the classes denotes the edges of
the graph. The similarity of class diagrams is computed
using genetic algorithm using fitness function that relies
on similarity measures based on the concept names (class
names) on the graph topology.

 Similarly, particle swamp optimization algorithm was
used to retrieve similar class diagrams36; the similarity
between two class diagrams is computed as an aggregate
of classifier similarity and relationship similarity.

In another work multi-objectives algorithms is used
to retrieve similar class diagrams from repository37. Class
diagrams are converted to directed graph in which the
class represents the nodes of the graph and the relation-
ship between the classes represents the edges of the graph.
The similarity between class diagrams is computed using
the relationship and name similarity. The relationship

similarity measure the topological similarity of the dia-
grams while the name similarity measure the conceptual
closeness between concepts in the class diagrams using
Levenshtein Distance38. The fitness function is the aggre-
gation of the two similarity measure39.

Sequence diagrams are converted to a directed graph,
the similarity between the graphs was determined with
the aid of Genetic Algorithm (GA)40. The GA helps to
terminate the searching process in order avoid exhaustive
comparison. The termination criteria is based on three
conditions: first if the fitness value reaches 0 indicating
the maximum similarity between class diagrams, second
if the maximum number of iteration reached, or if the fit-
ness function does not improve within a given number of
iterations.

State machine diagrams are converted to labeled
directed graphs in which the states in the state machine
diagram denotes the node of the graph and the transition
in the state machines denotes the edges of the graph41.
Information regarding state machine diagrams is stored
in an adjacency matrix; the similarity between two state
machines is computed based on their graph represen-
tation using Different matrix (DiffE). The DiffE act as
a lookup table which indicates the degree of similarity
between the different types of edges in the state machine
diagrams.

3.5 Discussion
The existing work on UML models retrieval can be clas-
sified into two: based on the textual description of the
models (i.e. matching of the diagram concept) or relation-
ship between the models (i.e. the structural representation
of the models).

Concept matching is the most common way used in
finding the match between elements in the diagrams.
IR approach is being applied by many researchers to
retrieved similar diagrams from the repository by match-
ing the concepts contained in the models, especially
those models that contained considerable amount of text
such as use case diagrams. However the drawback of IR
approach is that two models are considered equals if they
contain similar words in the same frequency. Ambiguity
here arises when the two models representation/struc-
ture is the same but the actual meaning is different. The
IR approach does not solve the ambiguity problems.
Moreover, the structural representation of the models is
not capture by the IR approach. Therefore two models

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 6

A Review of UML Model Retrieval Approaches

with the same words meaning but with opposite proce-
dures are considered to be equal in this approach.

Basic CBR approach uses the traditional IR measure
for string comparison. In CBR, two cases are considered
equal if they share the same case representation25. CBR
application provides a good way to retrieve models that
belong to the same domains. However, with reuse spans
to a variety of applications domains the CBR approach do
not address the ambiguity problems.

Lexical Ontologies are used to determine the mean-
ing of words in the models and can be used to overcome
the ambiguity problem in IR and CBR. Several similarity
measure have used WordNet lexicon to measure similarity
between synset pair, noun pairs, and verb pairs. WordNet
measures the distance between two synsets based on their
path length defined by their semantic relations. Two dif-
ferent synsets are considered similar when there is a short
distance in their path length. However, WordNet needs to
be applied in combination of other approaches such IR or
CBR to solve the ambiguity problem.

In contrast to concept matching, relationship match-
ing extends the comparisons among the attributed
concepts to include concept relationships. The approach
relies on computing the structure of the diagrams by con-
verting the corresponding diagrams to a graph’s structure
in which the concepts denotes the vertices and relation-
ships denotes the edges of the graph. The graph-based
approach of diagrams retrieval computes the similarity
for all potentials matches between the elements within
the diagrams. It is well suited for comparing the dia-
grams with a structured format like sequence diagrams.
However, this approach relies only on structural repre-
sentation of the UML diagrams neglecting the conceptual
information inside the diagram.

4. Query Formulation
A query is a pre-requisite for component retrieval. It is a
way of formulating a request that can select some com-
ponents as a result of satisfying some similarity criteria.
To find the most similar diagram from a set of previously
designed UML diagrams, the user should formulate a
query and send that query to the components repository
for possible matching and retrieval. While most of the
existing retrieval engine is based on the text box to search
for retrieval terms, a retrieval search engine for UML
information is thought to be graphical. For example, sup-
pose a new banking information system is to be design

and the designer has the system analysis and design in the
form of use case diagram. The designer extracts some of
the initial entities identified during system analysis and
drawn in a class diagram. The initial diagram represents
part of the classes identified in the system requirements.
To achieve this process some authors uses existing case
tool such Object Aid39, Altova28,35 to obtained the equiva-
lent XMI documents of the UML diagrams. The XMI
documents serve as the input to the UML retrieval engine,
in which the retrieval engine provides a concrete solution
to the UML elements mapping problem.

Query in XMI format is transformed into an infor-
mation representation model based on relationships
between the artifacts and the sub-artifacts using RSPH42.
An XMI parser detects the structure of the document
to ascertain if the document conforms to the XMI stan-
dard. The Parser identifies the XMI elements (attributes,
classes, relations) in a model and identifies the relation-
ships among those modeled elements. The similarity of
two documents is calculated based on their semantic dis-
tance of the common concepts in both documents and
the common RSHPs of both documents14.

UML documents in XMI form was indexed using
.NET application to categorize the class diagram elements
according to their application ontology and stored in a
knowledge base26. The class diagram in the query was also
indexed the same way as the knowledge base. The simi-
larity between the two XMI documents is calculated as
the weighted sum of different class diagram categories.
The authors used Poseidon4 CASE Tool to obtain the XMI
equivalent for the UML class diagrams.

5. Evaluation Procedure
Various studies evaluated their work using standard
information retrievals such as Precision and Recall; the
idea is to test whether the proposed retrieval approaches
produce a reasonable degree of matching between query
and repository diagrams. Precision is the proportion of
retrieved documents/diagrams that are similar to the
user query while recall is the proportion of matched
repository diagrams that are retrieved. There is trade-off
between these two measures; for instance high recall with
low precision can be achieved by retrieving all repository
diagrams. On the other hand high precision but low recall
can be achieved by not retrieving any of the repository
diagrams10. F-measure combines these two measures in
one single value; it is the weighted harmonic mean of pre-

Indian Journal of Science and Technology 7Vol 9 (46) | December 2016 | www.indjst.org

Alhassan Adamu and Wan Mohd Nazmee Wan Zainon

cision and recall depending on the relative importance
of a measure. It is worth noting that the result of various
studies will be difficult to compare due to unavailability
of open datasets since most of the study rely on textbook
examples while other studies rely on reverse engineering
from source code. Moreover, the varying size of query
and repository diagrams used in various studies makes it
hard to compare the result of two different studies.

6. Conclusion
In this review, we discussed the current state of the art of
UML diagrams reuse. Information retrieval is one of the
earliest approaches to retrieved similar UML diagrams
from repository. Information retrieval techniques are
mostly in the UML diagrams that contained a consider-
able amount of text, for example use case diagrams. Other
retrieval techniques combine IR with other techniques
such as WordNet lexicon ontology. Many studies applied
WordNet lexicon ontology because it is freely available.
However, the limitation of using WordNet is a lack of its
incorporations of technical information regarding the
domains of specific knowledge because it is just a lexi-
cal database of English. Therefore, it is not surprising that
WordNet is applied in conjunction with other retrieval
techniques such IR and CBR. The use of Case-based
reasoning holds a promising future in software reuse
because of its capability in allowing the re-user to adapt
the retrieved diagrams into new software design automat-
ically, thereby reducing the effort required during reuse. It
is worth to note that most existing approaches use more
than one retrieval techniques.

UML consist of fourteen diagrams; class, use case, and
sequence diagrams are the most type of diagrams consid-
ered by the majority of the authors. There is only little
work on reusing the other types of UML diagrams.

7. Acknowledgements
This work was supported by the Ministry of Higher
Education of Malaysia, under the Fundamental Research
Grant Scheme (FRGS: 203/PKOMP/6711533).

8. References
1.	 Krueger CW. Software reuse. ACM Computing Surveys

(CSUR). 1992; 24(2):131-83.

2.	 Sommerville I. Software Engineering. 9 ed. Vol. 9. Addison-
Wesley United State: Pearson Education, Inc Publishing;
2011. 790.

3.	 Keswani R, Joshi S, Jatain A. Software reuse in practice. IEEE
4th International Conference on Advanced Computing and
Communication Technologies (ACCT); 2014.

4.	 Salami HO, Ahmed MA. UML Artifacts Reuse: State of the
Art. 2014.

5.	 Prieto-Diaz R. Status report: Software reusability. IEEE
Software. 1993; 10(3):61-6.

6.	 Gomes P, et al. Case retrieval of software designs using
wordnet. ECAI; 2002.

7.	 Park W-J, Bae D-H. A two-stage framework for UML speci-
fication matching. Information and Software Technology.
2011; 53(3):230-44.

8.	 Alspaugh TA, et al. An integrated scenario management
strategy. IEEE Proceedings of International Symposium on
Requirements Engineering; 1999.

9.	 Salami HO, Ahmed M. A framework for reuse of multi-
view UML artifacts. 2014.

10.	 Manning CD, Raghavan P, Schutze H. Introduction to
information retrieval. Vol. 1. Cambridge: Cambridge
University Press; 2008.

11.	 Wolter K, Krebs T, Hotz L. Determining similarity of
model-based and descriptive requirements by combining
different similarity measures. 2nd International Workshop
on Model Reuse Strategies (MoRSe); Beijing, China. 2008.

12.	 Blok MC, Cybulski JL. Reusing UML specifications in
a constrained application domain. Proceedings of IEEE
Software Engineering Conference; Asia Pacific. 1998.

13.	 Ali FM, Du W. Toward reuse of object-oriented software
design models. Information and Software Technology.
2004; 46(8):499-517.

14.	 Llorens J, Fuentes JM, Morato J. Uml retrieval and reuse
using xmi. Proceedings of the IASTED International
Conference on Software Engineering; 2004.

15.	 Aamodt A, Plaza E. Case-based reasoning: Foundational
issues, methodological variations and system approaches.
AI Communications. 1994; 7(1):39-59.

16.	 Bergmann R, Kolodner J, Plaza E. Representation in case-
based reasoning. The Knowledge Engineering Review.
2005; 20(03):209-13.

17.	 Channarukul S, Charoenvikrom S, Daengdej J. Case-
based reasoning for software design reuse. IEEE Aerospace
Conference; 2005.

18.	 Smialek M, et al. Complementary use case scenario repre-
sentations based on domain vocabularies. Model Driven
Engineering Languages and Systems. 2007; 544-58.

19.	 Bildhauer D, Horn T, Ebert J. Similarity-driven software
reuse. ICSE Workshop on Comparison and Versioning of
Software Models (CVSM ‘09); 2009.

Indian Journal of Science and TechnologyVol 9 (46) | December 2016 | www.indjst.org 8

A Review of UML Model Retrieval Approaches

20.	 Straszak T, Wolter K. Comprehensive system for system-
atic case-driven software reuse. Theory and Practice of
Computer Science (SOFSEM); 2010. p. 697.

21.	 Srisura B, et al. Retrieving use case diagram with case-
based reasoning approach. J Theor Appl Inf Technol. 2010;
19(2):68-78.

22.	 Wolter K, Krebs T, Hotz L. A combined similarity measure
for determining similarity of model-based and descrip-
tive requirements. Proceeding of the Artificial Intelligence
Techniques in Software Engineering Workshop (AISEW) at
the ECAI; 2008.

23.	 Robles K, et al. Towards an ontology-based retrieval of UML
Class Diagrams. Information and Software Technology.
2012; 54(1):72-86.

24.	 Bonilla-Morales B, Crespo S, Clunie C. Reuse of use cases
diagrams: An approach based on ontologies and semantic
web technologies. Int J Comput Sci. 2012; 9(1):24-9.

25.	 Paydar S, Kahani M. A semi-automated approach to adapt
activity diagrams for new use cases. Information and
Software Technology. 2015; 57:543-70.

26.	 Gonzalez-Calero PA, Diaz-Agudo B, Gomez-Albarran
M. Applying DLs for retrieval in case-based reasoning.
Proceedings of Description Logics Workshop (Dl’99);
Linkopings Universitet. 1999.

27.	 Robinson WN, Woo HG. Finding reusable UML sequence
diagrams automatically. Software. 2004; 21(5):60-7.

28.	 Jonyer I, Cook DJ, Holder LB. Graph-based hierarchical
conceptual clustering. The Journal of Machine Learning
Research. 2002; 2:19-43.

29.	 Salami HO, Ahmed M. Class diagram retrieval using
genetic algorithm. IEEE 12th International Conference on
Machine Learning and Applications (ICMLA); 2013.

30.	 Wesley Klewerton Guez Assunc SRV. Class diagram retrieval
with particle swarm optimization. 25th International
Conference on Software Engineering and knowledge
Engineering (SEKE); 2013. p. 632-7.

31.	 Assuncao G, Klewerton W, Vergilio SR. A multi-objec-
tive solution for retrieving class diagrams. IEEE Brazilian
Conference on Intelligent Systems (BRACIS); 2013.

32.	 Levenshtein VI. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady.
1966.

33.	 Assuncao WKG, Vergilio SR. Class Diagram retrieval
with particle swarm optimization. The 25th International
Conference on Software Engineering and Knowledge
Engineering (SEKE); 2013.

34.	 Salami HO, Ahmed M. Retrieving sequence diagrams using
genetic algorithm. IEEE 11th International Joint Conference
on Computer Science and Software Engineering (JCSSE);
2014.

35.	 Ahmed M, Salami HO. Behavior-based Retrieval of
Software. 2015.

36.	 Salami HO, Ahmed MA. A framework for class diagram
retrieval using genetic algorithm. SEKE. 2012.

37.	 Morillo JL, Fuentes JM, Diaz I. RSHP: A scheme to classify
information in a domain analysis environment. ICEIS (2);
2001.

