Total views : 162

Native Mycorrhizae for Improving Seedling Growth in Avocado Nursery (Persea americana Mill.)

Affiliations

  • Santa Catalina Research Site, National Institute of Agricultural Research (INIAP), Mejía, Ecuador
  • Bio-Analysis Faculty, Pontifical Catholic University of Ecuador (PUCE), Quito, Ecuador
  • Faculty of Engineering and Agricultural Sciences, University of the Americas (UDLA), Quito, Ecuador

Abstract


Objectives: This research aims to evaluate the efficiency of the use of native mycorrhizae on seedling growth of avocado to produce high quality avocado plants. Methods: Root and soil sampling was done in 14 avocado production sites from Interandean valleys of Ecuador. Native mycorrhizae inoculum and two control treatments (commercial product and absolute control without inoculation) were evaluated in both seed and seedlings. A randomized complete block design was applied for the trails. Analysis of variance was run to determine statistical differences and the Tukey test at 5% was used to determine ranges of significance. Findings: Soils showing largest number of spores and highest percentage of mycorrhizal colonization were collected in Tumbabiro (Imbabura) and San José de Minas (Pichincha). Compared to the absolute control, an increase in total phosphorus and dry matter content of 84% and 100%, respectively, was observed in trap plants. Using inoculum from Tumbabiro and San José de Minas to inoculate avocado seeds and seedlings, dry matter content increased by 44% while the percentage of total phosphorus increased by 42% compared to the controls. Although acceptable results were obtained with the commercial product about the percentage of phosphorus and dry matter, poor percentages of root colonization were obtained; whereas the native inoculum from Tumbabiro and San José de Minas produced better results improving avocado seedling growth in nursery. Application/Improvements: This research allows us to infer that native mycorrhizal strains are effective as inoculum to enhance the development of avocado seedlings.

Keywords

Arbuscular Mycorrhizal Fungi, Colonization, Inoculation, Phosphorous

Full Text:

 |  (PDF views: 114)

References


  • Gutierrez A, Martinez J, Garcia E, Iracheta L, Ocampo J, Cerda I. Estudio de la diversidad genetica del aguacate nativo en Nuevo Leon. Mexico Reviews. 2009; 32(1):9–18.
  • Oduro G, Kwabena G, Williams A. Genetic diversity among local and introduced avocado germplasm based on morphoagronomic. International Journal of Plant Breed. 2013; 7(1):76–91.
  • Viera A, Sotomayor A, Viera W. Potencial del cultivo de aguacate (Persea americana Mill.) en Ecuador como alternativa de comercialización en el mercado local e internacional. Revista Cientifica y Tecnologica UPSE. 2016; 3(3):1–9.
  • Viera W, Ponce L, Morillo E, Vasquez W. Genetic variability of avocado germplasm for plant breeding. International Journal of Clinical Biology Science. 2016; 1:24–33.
  • Viera W, Campaña D, Castro S, Vásquez W, Viteri P, Zambrano J. Effectiveness of the arbuscular mycorrhizal fungi use in the cherimoya (Annona cherimola Mill.) seedlings growth.
  • Acta Agron. 2017; 66(2):207-213.
  • Viera W, Campaña D, Lastra A, Vásquez W, Viteri P, Sotomayor A. Micorrizas nativas y su efecto en dos portainjertos de tomate de árbol (Solanum betaceum Cav.)Bioagro. 2017; 29(2):105–14.
  • Verbruggen E, Heijden M, Rillig M, Kiers E. Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytology. 2013; 197(4):1104–9. CrossRef.
  • Salamanca C, Cano C. Efecto de las micorrizas y el sustrato en el crecimiento vegetativo y nutricion de cuatro especies frutales y una forestal, en la fase de vivero, en el municipio de Restrepo-Meta, Colombia. Suelos Ecuatoriales. 2005; 35:5–11.
  • Saravesi K, Ruotsalainen A, Cahill J. Contrasting impacts of defoliation on root colonization by arbuscular mycorrhizal and dark septate endophytic fungi of Medicago sativa. Mycorrhiza. 2014; 24(4):239–45. CrossRef. PMid:24197419
  • Koschier E, Khaosaad T, Vierheilig H. Root colonization by the arbuscular mycorrhizal fungus Glomus mosseae and enhanced phosphorous levels in cucumber do not affect host acceptance and development of Frankliniella occidentalis. Journal of Plant Interact. 2007; 2:11–15. CrossRef.
  • Smith S, Anderson I, Smith F. Mycorrhizal associations and phosphorus acquisition: From cells to ecosystems. Annual Plant Reviews. 2007; 48:409–40.
  • Herrera R. General methodology to analyse rootlets raw humus and Vesicle Arbuscular Mycorrhizal (VAM) components. Cuba: Educational Ancoras; 1993.
  • Phillips J, Hayman D. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transaction of British Mycology and Society. 1970; 55:158. CrossRef.
  • Association of Official Analytical Chemist. Official Methods of analysis. 20th ed. Washington, USA: AOAC International; 2016.
  • Blanco F, Salas E. Micorrizas en la Agricultura: Contexto Mundial e investigación realizada en Costa Rica. Agron Costarric. 1997; 21:55–67.
  • Lozano J, Armbrecht I, Montoya J. Hongos formadores de micorrizas arbusculares y su efecto sobre la estructura de los suelos en fincas con manejos agroecológicos e intensivos. Acta Agron. 2015; 64(4):289–96.
  • Bressan W, Siqueira J, Vasconcellos C, Purcino A. Mycorrhizal fungi and phosphorus on growth, yield and nutrition of intercropped grain sorghum and soybean. Pesqui Agropecu Bras. 2001; 36:315–23. CrossRef.
  • Díaz A, Salinas J, Espinoza F, Garza M, Graged A. Características de planta, suelo y productividad entre sorgo fertilizado e inoculado con micorriza arbuscular. Revista Mexicana de Ciencias Agrícolas. 2014; 5:379–90.
  • Díaz A, Jacques C, Pena del Rio M. Productividad de sorgo en campo asociada con micorriza arbuscular y Azospirillum brasilense. University of Science. 2008; 24:229–37.
  • Pérez A, Rojas J, Montes V. Hongos formadores de micorrizas arbusculares: una alternativa biologica para la sostenibilidad de los agroecosistemas de praderas en el caribe colombiano. Review of Colombiana Cienc. Animation. 2011; 3:366–85.
  • Andrango A, Cueva M, Viera V, Duchicela J. Evaluation of methods to estimate mycorrhizal inoculum potential in field Soils. Ciencia. 2016; 18:329–52.
  • Pinos M, Morell V, Nieto A. Microrrizas arbusculares en producción agrícola. Horticultural. 2000; 144:38–41.
  • Montanez I, Vargas C, Cabezas M, Cuervo J. Colonizacion micorrizica en plantas de aguacate (Persea americana L.). Review of U.D.C.A Actual Divulg Cient. 2010; 13:51– 60.
  • Posada R, Franco L, Tiempo de establecimiento de pastu ras y su relacion con la micorriza arbuscular en paisajes de loma y vega. Acta Biology Colomb. 2006; 11:55–64.
  • Majkowska J, Dobrowolski A, Mikulewicz, E. Effect of a mycorrhizal inoculum on the yielding and chemical composition of fruit four cultivars of tomato. ActaSci Pol Hortorum Cultus. 2016; 15(6):61–8.
  • Noda Y. Las Micorrizas: Una alternativa de fertilización ecológica en los pastos. Pastos y Forrajes. 2009; 32:1–1.
  • Lopez M, Espana M, Toro M. Eficiencia de absorcion de fosforo en cultivares de sorgo de diferente tolerancia a la toxicidad de aluminio. Agron Trophy. 2007; 57:205– 18.
  • Meinhardt K, Gehring C. Disrupting mycorrhizal mutualisms: A potential mechanism by which exotic tamarisk outcompetes native cottonwoods. Ecology Application. 2012; 22(2):532–49. CrossRef.
  • García I, Mendoza R. Relationships among soil properties plant nutrition and arbuscular mycorrhizal fungi plants symbioses in temperature grassland a long hydrologic saline and sodic gradients. FEMS Microbiology and Ecology. 2008; 63:359–71. CrossRef. PMid:18205811

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.