Total views : 154

Picosecond Optical Pulse Generation by Nonlinear Mirror Mode-Locking: A Review

Affiliations

  • Department of Physics, Jhargram Raj College (Government of West Bengal), Jhargram – 721507, West Bengal, India

Abstract


Background/Objectives: This article provides comprehensive review on nonlinear mirror mode-locked laser which is compact, efficient, simplest and stable source of picosecond optical pulse and is of immense research interest. Methods/ Analysis: Starting with the basics of nonlinear mirror mode-locking technique, a chronological development of the subject is presented. Issues with the efficiency and stability of the nonlinear mode-locking are addressed in both theoretical and experimental perspective. Different schemes of nonlinear mirror mode-locking, reported till date, are illustrated and compared in reference to the obtained pulse durations, power scaling, self starting and self sustained efficient modelocking. Findings: Nonlinear mirror, comprising a second harmonic generating crystal and a dichroic output coupler, can mode-lock a laser due to its behaviour analogous to fast saturable absorber. Efficiency of the laser is increased with the diode pumping; however nonlinear mirror is observed prone to passive Q-switching instability. Simultaneously Q-switched and mode-locked operation gives a simple way of increasing the peak power but is of no use because of rapid fluctuations of pulse amplitude and repetition rate. Incorporation of an accousto-optic Q-switch in the laser cavity helps run the laser in actively Q-switched and passively mode-locked regime which provides enormous stability of the Q-switched and modelocked pulse envelops and the enhanced peak power becomes useful. Pure contentious wave mode-locking is obtained by incorporation of additional intensity dependent loss mechanism by way of introducing third harmonic generation in the laser cavity and it gives an inverse saturable nonlinear loss modulation. Inverse saturable nonlinear mirror produces efficient, self sustained and stable contentious wave mode-locked picosecond optical pulse train. Application /Improvement: Nonlinear mirror mode-locked lasers have wide application in micromachining, optical frequency conversion, pumping optical parametric oscillators etc. Propositions are made for getting improved nonlinear mirror mode-locking to get bandwidth limited pulse width.

Keywords

Laser, Mode-Locking, Nonlinear Mirror, Q-switching, Second Harmonic Generation, Third Harmonic Generation

Full Text:

 |  (PDF views: 86)

References


  • Fan TY, Byer RL. Diode laser-pumped solid state lasers.IEEE Journal of Quantum Electronics. 1998 Jun; 24(6):895– 912. Crossref.
  • Siegman AE. Lasers. Oxford University Press.1986; 8(1):70.
  • Haus HA. Mode-locking of lasers. IEEE Journal on Selected Topics in Quantum Electronics. 2000 Nov; 6(6):1173–84. Crossref.
  • Keller U. Recent development in compact ultrafast lasers. Nature. 2003 Aug; 424(6950):831–8. Crossref PMid:12917697
  • Haus HA. Theory of mode locking with a fast saturable absorber. Journal of Applied Physics. 1975 Jul; 46(7):3049– 58. Crossref.
  • Haus HA. Theory of mode locking with a slow saturable absorber. IEEE Journal of Quantum Electronics. 1975 Sep; 11(9):736–46. Crossref.
  • Spence DE, Kean PN, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti: Sapphire laser. Optics Letters. 1991 Jan; 16(1):42–4. Crossref. PMid:19773831
  • Keller U, Weingarten KJ, Kartner FX, Kopf D, Braun B, Jung ID, Fluck R, Honninger C, Matuschek N, Au JAD. Semiconductor Saturable Absorber Mirrors (SESAM’s) for femtosecod to nanosecond pulse generation in solidstate lasers. IEEE Journal of Selected Topics in Quantum Electronics. 1996 Sep; 2(3):435–52. Crossref.
  • Stankov KA, Jethwa J. A new mode-locking technique using a nonlinear mirror. Optics Communications. 1998 Apr; 66(1):41–6. Crossref.10. Stankov KA. A mirror with an intensity-dependent reflection coefficient. Applied Physics B. 1998 Mar; 45(3):191–5. Crossref.
  • Boyed RW. Nonlinear Optics. 2nd Edition. Academic Press: San Dieg; 2003. p. 1–19. Crossref.
  • Stegeman GI, Hagan DJ, Torner L. χ(2) cascading phenomena and their applications to all-optical signal processing mode-locking pulse compressions and solitons. Optical and Quantum Electronics. 1996 Dec; 28(12):1691–740. Crossref.
  • Rossi MZ, Cerullo G, Magni V. Mode-locking by cascading second order nonlinearities. IEEE Journal of Quantum Electronics. 1998 Jan; 34(1):61–70. Crossref.
  • Mukhopadhyay S, Mondal S, Singh SP, Date A, Hussain K, Datta PK. Dual colour cw mode-locking through soft aperture based on second order cascaded nonlinearity. Optics Express. 2013 Jan; 21(1):454–62. Crossref. PMid:23388939
  • Stankov K. Mode-locking by frequency doubling crystal: Generation of transform-limited ultrashort light pulses. Optics Letters. 1989 Apr; 14(7):359–61. Crossref. PMid:19749920
  • Stankov KA. 25ps pulses from a Nd:YAG laser mode-locked by a frequency doubling β-BaB2O4 crystal. Applied Physics Letters. 1991 May; 58(20):2203–4. Crossref.
  • Stankov KA, Kubecek V, Hamal K. Mode-locking of an Nd: YalO3 laser at the 1.34-μm transition by a second-harmonic nonlinear mirror. Optics Letters. 1991 Apr; 16(7):505–7. Crossref. PMid:19773981
  • BuchvarovI Ch, Stankov KA, Saltiel SM. Pulse shortening in an actively mode-locked laser with a frequency-doubling nonlinear mirror. Optics Communications. 1991 Jun; 83(3,4):241–5.
  • Agnesi A, Piccinini E, Reali SC, Solcia C. All-solid-state picosecond tunable source of near-infrared radiation. Optics Letters. 1997 Sep; 22(18):1415–7. Crossref. PMid:18188255
  • Mani AA, Hollander Ph, Thiry PA, Peremanas A. All solidstate 12 ps actively passively mode-locked pulsed Nd: YAG laser using nonlinear mirror. Applied Physics Letters. 1999 Nov; 75(20):3066–8. Crossref.
  • Cerullo G, Danailov M B, De Silvestri S, Laporta P, Magni V, Segala D, Taccheo S. A diode-pumped nonlinear mirror mode-locked Nd: YAG laser. Applied Physics Letters. 1994 Nov; 65(19):2392–4. Crossref.
  • Koechner W. Solid-State Laser Engineering. 5th Edition. Springer: Berlin. 1999; 1:1–27. Crossref.
  • Tucker AW, Birnbaum M, Fincher CL, Erler JW. Stimulated emmision cross section at 1064nm and 1342nm in Nd:YVO4. Journal of Applied Physics. 1997 Dec; 48(12):4907–11. Crossref.
  • Sliney Jr JG, Leung KM, Birnbaum M, Tucker AW. Lifetimes of 4F3/2 state in Nd: YVO4. Journal of Applied Physics. 1979 May; 50(5):3778–9. Crossref.
  • Chen YF, Huang TM, Liao CC, Lan YP, Wang SC. Efficient High-Power Diode-End-Pumped TEM00 Nd: YVO Laser. IEEE Photonics Technology Letters. 1999 Oct; 11(10):1241–3. Crossref.
  • Chen YF. Design Criteria for Concentration Optimization in Scaling Diode End-Pumped Lasers to High Powers: Influence of Thermal Fracture. IEEE Journal of Quantum Electronics.1999 Feb; 35(2):234–9. Crossref.
  • Datta PK, Shivanad, Mukhopadhyay S, Agnesi A, Lucca A. Picosecond pulse generation and its simulation in a nonlinear optical mirror mode-locked laser. Applied Optics. 2004 Apr; 43(11):2347–52. Crossref. PMid:15098838
  • Datta PK, Mukhopadhyay S, Agnesi A. Stability regime study of a nonlinear mirror mode-locked laser. Optics Cummunications. 2004 Feb; 230(4-6):411–8. Crossref.
  • Diels JW, Rudolph W. Ultrashort Laser Pulse Phenomena. Academic Press: California; 1996. p. 1–21.
  • Datta PK, Mukhopadhyay S, Das SK, Tartara L, Agnesi A, Degiorgio V. Enhancement of stability and efficiency of a nonlinear mirror mode-locked Nd:YVO4 oscillator by an active Q-switch. Optics Express. 2004 Aug; 12(17):4041–7. Crossref. PMid:19483944
  • Ray A, Das SK, Mukhopadhyay S, Datta PK. Acousto-opticmodulatorstabilized low-threshold mode-locked Nd: YVO4 laser. Applied Physics Letters. 2006 Nov; 89(22):1–2. Crossref.
  • Lin J H, Yang WH, Hsieh WF. Low threshold and high power output of a diode-pumped nonlinear mirror modelocked Nd: GdVO4 laser. Optics Express. 2005 Aug; 13(17):6323–9. Crossref. PMid:19498645
  • Lin JH, LinKH, Hsu HH, Hsieh WF. Q-switched and modelocked pulses generation in Nd:GdVO4 laser with dual loss-modulation mechanism. Laser Physics Letters. 2008 Jan; 5(4):276–80. Crossref.
  • Li ZY, Zhang BT, Yang JF, He JL, Huang HT, Zuo CH, Xu JL, Yang XQ, Zhao S. DiodePumped Simultaneously Q-Switched and ModeLocked Nd:GdVO4/LBO Red Laser. Laser Physics. 2010 Apr; 20(4):761–5. Crossref.
  • Li M, Zhao S, Yang K, Li G, Li D, Wang J, An J, Qiao W. Actively-switched and Mode-Locked Diode-Pumped Nd:GdVO–KTP Laser. IEEE Journal of Quantum Electronics. 2008 Mar; 44(3):288–93. Crossref.
  • Theobald C, Weitz M, Knappe R, Wallenstein1 R, Lhuillier JA. StableQ-switch mode-locking of Nd:YVO4 lasers witha semiconductor saturable absorber. Applied Physics B. 2008 Jul; 92(1):1–3. Crossref.
  • Chang YM, Lee J, Jhon YM, Lee JH. Q-switched mode-locking of an erbium-doped fiber laser using cavity modulation frequency detuning. Applied Optics. 2012 Jul; 51(21):5295– 301. Crossref. PMid:22858974
  • Yu J, Grando D, Tartara L, Degiorgio V. Widely tunable optical parametric oscillator driven by a pulsed diode-pumped nonlinear-mirror mode-locked Nd:YAG laser. Optics Communications. 2006 Apr; 260(1):257–64. Crossref.
  • Li T, Zhao S, Zhuo Z, Yang K, Li G, Li D. Dual-lossmodulated Q-switched and mode-locked YVO4/
  • Nd:YVO4/KTP green laser with EO and Cr4+:YAG saturable absorber. Optics Express. 2010 May; 18(10):10316–32. Crossref. PMid:20588886
  • Zhang G, Zhao S, Yang K, Li G, Li D, Cheng K, Han C, Zhao B, Wang Y. A dual-loss-modulated intra-cavity frequency-doubled Q-switched and mode-locked Nd:Lu0.15Y0.85VO4/KTP green laser with a single-walled carbon nanotube saturable absorber and an acousto-optic modulator. Journal of Optics. 2011 Aug; 13(9). Crossref. PMid:24353894 PMCid:PMC3864818
  • Feng T, Zhao S, Yang K, Li G, Li Dechun, Zhao J, Zhao B, Wang Y. Intracavity-frequency-doubled Q-switched and mode-lockedNd:Lu0.15Y0.85VO4/KTP green laser with AO modulator and central SESAM. Optik International Journal for Light and Electron Optics. 2014 Jun; 125(12):2739–44. Crossref.
  • Qiao J, Zhao S, Yang K, Zhao J, Li G, Li D, Li T, Qiao W. Optics Express. 2017 Feb; 25(4):4227–38. Crossref. PMid:28241627
  • Haus HA. Parameter ranges for cw passive mode-locking. Journal of Quantum Electronics. 1976 Mar; 12(3):169–76. Crossref.
  • Kartner FX, Brovelli LR, Kopf D, Kamp F, Calasso I, Keller U. Control of solid state laser dynamics by semiconductor devices. Optical Engineering. 2005 Nov; 34(7):2024–36. Crossref.
  • Honinger C, Paschotta R, Morier-Genound H, Moser M, Keller U. Q-switching stability limits of continuouswave passive mode locking. Journal of Optical Society of America B. 1999 Jan; 16(1):46–56. Crossref.
  • Schibili TR, Thoren ER, Kartner FX, Ippen EP. Suppression of Q-switched mode-locking and break-up into multiple pulses by inverse saturable absorption. Applied Physics B. 2000 Jun; 70(1):S41–9. Crossref.
  • Thoren ER, Koontz EM, Joschko M, Langlois P, Schibili TR, Kartner FX, Ippen EP, Kolodziejski LA. Two-photon absorption in semiconductor saturable absorbermirrors. Applied Physics Letters. 1999 Jun; 74(26):3927–9. Crossref.
  • Langlois P, Joschko M, Thoren ER, Koontz EM, Kartner EX, Ippen EP. High fluence ultrafast dynamics of semiconductor saturable mirrors. Applied Physics Letters. 1999 Dec; 75(24):3841–3. Crossref.
  • Datta PK, Mukhopadhyay S, Samanta GK, Das SK, Agnesi A. Realization of inverse saturable absorption by intracavity third-harmonic generation for efficient nonlinear mirror mode-locking. Applied Physics Letters. 2005 Apr; 86(15):151105-3. Crossref.
  • Stankov KA, Tzolov VP, Mirkov MG. Compensation of group velocity mismatch in the frequency doubling modelocker. Applied Physics B. 1992 Apr; 54(4):303–6. Crossref.
  • Cerullo G, Magni V, Monguzzi A. Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities. Optics Letters. 1995 Sep; 20(17):1785–7. Crossref. PMid:19862157

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.