• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 33, Pages: 3364-3376

Original Article

A rainfall-runoff model using artificial neural networks for the district of Bankura in a time of climate change

Received Date:02 June 2020, Accepted Date:30 August 2020, Published Date:10 September 2020


Objectives: The main objective of this research is to determine the Hydrological (Rainfall-Runoff) model by using Artificial Neural Networks (ANNs) for the study area. Methods: The ANNs model was applied to the relative impact of different climatic variables such as Rainfall, Temperature, Cloud Cover, Potential Evapotranspiration, and Relative Humidity for the district of Bankura located on Lower Gangetic Plain (Zone no-III) in India. This study has also developed runoff hydrograph using various Slope, Rainfall Intensity, and Roughness over the catchment. The researcher has collected the Real-Time data series of 116 years(1901-2016) for the six meteorological stations of district Bankura from India Meteorological Department, Pune. For estimating runoff values, the study has been used Kothyari and Garde equation in which the most important factor i.e. the Vegetal Cover Factor (Fv) was considered. For developing the ANNs model, the available data were separated as 70% for training, 15% for testing, and 15% for validation. Findings: The Predicted values using ANNs model are more useful for better estimation of water resources management than previous researches. The model performance was with better efficiency (Nash-Sutcliffe Efficiency) and it was greater than 97%. Novelty: First time, this research established the Hydrological (Rainfall-Runoff) model by using Artificial Neural Networks(ANNs) for the study area.

Keywords: Artificial neural networks; climate change; meteorological data; water resources management; runoff; district Bankura


  1. Kundu S, Khare D, Mondal A, Mishra PK. Future rainfall analytic thinking (1871-2011) for whole India. Temperature Change and Bio-diversity. 2018;20(2):45–60. Available from: https://doi.org/10.18231/2454-9150.2018.1186
  2. Kundu S, Mishra PK, Mondal A, Khare D. Study and trend analysis of rainfall and temperature change of M. Environmental Earth Sciences. 1901;73(12):8197–8216. Available from: https://doi.org/12.1821/2454-9150.2015.1008
  3. Meena PK, Khare D, Kundu S, Mishra PK. Future analytic thinking of mega cities in North India exploitation precipitation knowledge. Indian Journal of science and technology. 2015;8(3):247–253. Available from: https://doi.org/10.17485/ijst/2015/v8i3/59580
  4. Dawson CW, Wilby RL. Hydrological modeling using Artificial Neural Networks. Progress in Physical Geography. 2015;25(1):80–108. Available from: https://doi.org/10.1177%2F030913330102500104
  5. Duhan D, Pandey A. Mathematical regression analysis of future rainfall and Temperature trend M.P, India. Atmospherically analysis. 1901;122:136–149. Available from: https://doi.org/10.24941/ijcr.33157.11.2016
  6. Daniela S, Georgiana PE, Catalina N. Weather forecast by Statistical Methods. Weather Prediction. 2019;1:269–274. Available from: http://www.weather.gov.hk/wxinfo/pastwx/extract
  7. Chakravarti A, Joshi N, Panjiar H. Rainfall Runoff Analysis using Artificial Neural Network. Indian Journal of Science and Technology. 2015;8(14):229–235. Available from: https://dx.doi.org/10.17485/ijst/2015/v8i14/54370
  8. Kumar PS, Praveen TV, Prasad MA. Artificial Neural Network Model for Rainfall-Runoff -A Case Study. International Journal of Hybrid Information Technology. 2016;9(3):263–272. Available from: https://dx.doi.org/10.14257/ijhit.2016.9.3.24
  9. Dhar A, Vekariya LR, Bhadja P. n-Alkane isomerization by catalysis—a method of industrial importance: An overview. Cogent Chemistry. 2018;4:424–427. Available from: https://dx.doi.org/10.1080/23312009.2018.1514686
  10. Dhawal H, Mishra N. A Survey on Precipitation Prediction Techniques. International Journal of Computer Application. 2016;6(2):1797–2250. Available from: http://www.cs.waikato.ac.nz/ml/weka
  11. Mathur P, Mathur S. A Simple Weather Forecasting Model Using Regression analysis. Current Science. 2014;6(2):145–263.
  12. Sethi N. Exploiting Data Mining Technique for rainfall prediction. International Journal of Computer Science and Technologies. 2014;5(3):3982–3984. Available from: https://www.researchgate.net/publication/275340859
  13. Ireland G, Volpi M, Petropoulos GP. Determining the capacity of machine learning classifiers in extracting flooded areas) Remote Sensing. 2015;7(3):3372–3399.
  14. Jain SK, Kumar V. Study and analysis of rainfall and temperature. Current Science. 2016;102(1):37–39. Available from: https://www.researchgate.net/publication/2753408592


© 2020 Dey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.