• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 12, Pages: 1203-1212

Original Article

A Two-Phase Approach for Efficient Traffic Sign Detection and Recognition

Received Date:23 November 2023, Accepted Date:21 February 2024, Published Date:20 March 2024


Objectives: The objective of this study is to enhance the accuracy of traffic sign detection and recognition in modern intelligent transport systems, addressing real-time challenges under varying conditions. Methods: A two-phase approach is adopted. The first phase employs the You Only Look Once version 8 (YOLOv8) architecture to efficiently detect traffic signs under real-time conditions, considering variables like adverse weather and obstructions. Subsequently, the second phase employs a sequential convolutional network for precise recognition, utilizing the output from the first phase. This integrated method enhances traffic sign detection and recognition, contributing to road safety and efficient traffic management in complex transportation scenarios. Findings: The YOLOv8 architecture, utilized in Phase 1, demonstrated exceptional performance with a mean Average Precision (mAP) of 0.986 during validation. In Phase 2, the Convolutional Neural Network (CNN)-based recognition model achieved an impressive test accuracy of 98.7% on 463 test images, with a low-test loss of 0.1186, indicating consistent accuracy. The robustness of both models is confirmed by successful testing with three unseen images. YOLOv8 accurately detected and classified these images, while the CNN model correctly recognized them. These findings underscore the effectiveness of the two-phase approach in enhancing traffic sign detection and recognition, with significant implications for improving road safety and traffic management in real-world scenarios. Novelty: The novelty of this approach lies in its seamless integration of YOLOv8 for efficient traffic sign detection and a sequential convolutional network for accurate recognition, offering a significant advancement in addressing real-time challenges and contributing to enhancing road safety and traffic management in an increasingly complex transportation landscape.

Keywords: Traffic sign detection, Traffic sign recognition, Convolutional Neural Networks, YOLOv8, Object detection


  1. Lim XR, Lee CP, Lim KM, Ong TS, Alqahtani A, Ali M. Recent Advances in Traffic Sign Recognition: Approaches and Datasets. Sensors. 2023;23(10):1–17. Available from: https://doi.org/10.3390/s23104674
  2. Manual on Uniform Traffic Control Devices (MUTCD) Federal Highway Administration. (n.d.). . Available from: https://mutcd.fhwa.dot.gov/index.htm
  3. Temirgaziyeva S, Omarov B. Traffic Sign Recognition With Convolutional Neural Network. Scientific Journal of Astana IT University. 2022;12(12):14–23. Available from: https://doi.org/10.37943/12YZFG6952
  4. Sun Y, Xue B, Zhang M, Yen GG, Lv J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification. IEEE Transactions on Cybernetics. 2020;50(9):3840–3854. Available from: https://doi.org/10.1109/TCYB.2020.2983860
  5. Liu C, Li S, Chang F, Wang Y. Machine Vision Based Traffic Sign Detection Methods: Review, Analyses and Perspectives. IEEE Access. 2019;7:86578–86596. Available from: https://doi.org/10.1109/ACCESS.2019.2924947
  6. Jin Y, Fu Y, Wang W, Guo J, Ren C, Xiang X. Multi-Feature Fusion and Enhancement Single Shot Detector for Traffic Sign Recognition. IEEE Access. 2020;8:38931–38940. Available from: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9007360
  7. Xie K, Zhang Z, Li B, Kang J, Niyato D, Xie S, et al. Efficient Federated Learning With Spike Neural Networks for Traffic Sign Recognition. IEEE Transactions on Vehicular Technology. 2022;71(9):9980–9992. Available from: https://doi.org/10.1109/TVT.2022.3178808
  8. Nadeem Z, Khan Z, Mir U, Mir UI, Khan S, Nadeem H, et al. Pakistani traffic-sign recognition using transfer learning. Multimedia Tools and Applications . 2022;81:8429–8449. Available from: https://doi.org/10.1007/s11042-022-12177-8
  9. Chen J, Jia K, Chen W, Lv Z, Zhang R. A real-time and high-precision method for small traffic-signs recognition. Neural Computing and Applications. 2022;34(3):2233–2245. Available from: https://doi.org/10.1007/s00521-021-06526-1
  10. Zhang Y, Lu Y, Zhu W, Wei X, Wei Z. Traffic sign detection based on multi-scale feature extraction and cascade feature fusion. The Journal of Supercomputing. 2023;79(2):2137–2152. Available from: https://doi.org/10.1007/s11227-022-04670-6
  11. Zhang S, Che S, Liu ZS, Zhang X. A real-time and lightweight traffic sign detection method based on ghost-YOLO. Multimedia Tools and Applications. 2023;82(17):26063–26087. Available from: https://doi.org/10.1007/s11042-023-14342-z
  12. Li Y, Li J, Meng P. Attention-YOLOV4: a real-time and high-accurate traffic sign detection algorithm. Multimedia Tools and Applications. 2023;82(5):7567–7582. Available from: https://doi.org/10.1007/s11042-022-13251-x
  13. Cui Y, Guo D, Yuan H, Gu H, Tang H. Enhanced YOLO Network for Improving the Efficiency of Traffic Sign Detection. Applied Sciences. 2024;14(2):1–15. Available from: https://doi.org/10.3390/app14020555
  14. Terven J, Córdova-Esparza DM, Romero-González JA. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Machine Learning and Knowledge Extraction. 2023;5(4):1680–1716. Available from: https://doi.org/10.3390/make5040083
  15. Jiang P, Ergu D, Liu F, Cai Y, Ma B. A Review of Yolo Algorithm Developments. Procedia Computer Science. 2022;199:1066–1073. Available from: https://doi.org/10.1016/j.procs.2022.01.135


© 2024 Uma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.