• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 17, Pages: 1406-1421

Original Article

Accurate liver disease prediction system using convolutional neural network

Received Date:15 March 2021, Accepted Date:28 April 2021, Published Date:17 May 2021


Objectives: To introduce the technique which can ensure the accurate and reliable prediction of liver disease by adapting the deep learning technique. Methods: In this work Modified Convolutional Neural Network based Liver Disease Prediction System (MCNN-LDPS) is introduced for the accurate liver disease prediction outcome. In the proposed research work, Dimensionality reduction is carried out using Modified Principal Component Analysis. Optimal feature selection is carried out using Score based Artificial Fish Swarm Algorithm (SAFSA). In SAFSA algorithm, information gain and entropy values are taken as input values which proved accurate outcome. This research method has been analysed over Indian Liver patient dataset. Findings: The analysis of the research work proves that the proposed method MCNN-LDPS obtains better outcome in terms of increased accuracy, precision. Here comparison analysis proved that MCNN-LDPS obtains 4.05% increased accuracy, 21.23% F-measure, 4.22% precision and 34.26% recall. This research method has been compared with the existing Multi layer Perceptron Neural Network (MLPNN) for the performance analysis. Novelty: The major limitation of CNN is its inability to encode Orientational and relative spatial relationships, view angle. CNN do not encode the position and orientation of data. Lack of ability to be spatially invariant to the input data sample. This is resolved in this research work by combining the genetic algorithm with the CNN method.

Keywords: Liver Disease Prediction; Feature Selection; Information Gain; Entropy; Convolutional neural network; Dimensionality Reduction


  1. Rajeswari P, Sophia RG. Analysis of liver disorder using data mining algorithm. Global journal of computer science and technology. 2010. Available from: https://computerresearch.org/index.php/computer/article/view/652
  2. Dhamodharan S. Liver disease prediction using bayesian classification . COMPUSOFT: An International Journal of Advanced Computer Technology. 2014;p. 1–3. Available from: https://ijact.joae.org/index.php/ijact/article/view/443/378
  3. Seker SE, Unal Y, Erdem Z, Kocer HE. Ensembled Correlation Between Liver Analysis Outputs. International Journal of Biology and Biomedical Engineering. 2014;8:1–5. doi: 2014
  4. A.S.Aneeshkumar, Venkateswaran CJ. A novel approach for Liver disorder Classification using Data Mining Techniques. Engineering and Scientific International Journal. 2015;2(1):15–18.
  5. Thangaraju P, Mehala R. Performance analysis of PSO-KStar classifier over liver diseases. International Journal of Advanced Research in Computer Engineering & Technology . 2015;4(7):3132–3137.
  6. Vijayarani S, Dhayanand S. Liver disease prediction using SVM and Naïve Bayes algorithms. International Journal of Science, Engineering and Technology Research. 2015;4(4):816–820.
  7. Olaniyi EOO, Adnan K. Liver disease diagnosis based on neural networks. Advances in Computational Intelligence. 2013;p. 48–53.
  8. Hassan EA, Hafez AI, Hassanien AE, Fahmy AA. Community Detection Algorithm Based on Artificial Fish Swarm Optimization”, Intelligent Systems. In: Advances in Intelligent Systems and Computing. (Vol. 323, pp. 509-521) Springer. 2014.
  9. Lever J, Krzywinski M, Altman N. Points of significance: Principal component analysis. Nature Methods. 2017;14(7):641–642. Available from: https://www.nature.com/articles/nmeth.4346.pdf
  10. Kambhatla N, Leen TK. Dimension Reduction by Local Principal Component Analysis. Neural Computation. 1997;9(7):1493–1516. Available from: https://dx.doi.org/10.1162/neco.1997.9.7.1493
  11. Neshat M, Sepidnam G, Sargolzaei M, Toosi AN. Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial intelligence review. 2014;42(4):965–997.
  12. Gulia AA, Vohra RR, Rani PP. Liver patient classification using intelligent techniques. International Journal of Computer Science and Information Technologies. 2014;5(4):5110–5115.
  13. Azizi R. Empirical Study of Artificial Fish Swarm Algorithm. International Journal of Computing, Communications and Networking. 2014;3(1):1–7. Available from: https://arxiv.org/abs/1405.4138
  14. Neshat M, Adeli A, Sepidnam G, Sargolzaei M, Toosi AN. A review of artificial fish swarm optimization methods and applications. International Journal on Smart Sensing and Intelligent Systems. 2017;5(1):108–148. Available from: https://doi.org/10.21307/ijssis-2017-474


© 2021 Jeyalakshmi & Rangaraj.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.