• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 6, Pages: 573-581

Original Article

Adsorption of diazinon residues from water by Strychnos potatorum seed flakes: Equilibrium isotherm and thermodynamic analysis

Received Date:09 December 2020, Accepted Date:31 January 2021, Published Date:25 February 2021

Abstract

Objectives: Contamination of pesticide residues due to agricultural activities is a major concern of aquatic pollution and most of the agriculture based rural communities in developing countries are still consuming water from those contaminated water bodies. Therefore, development of readily available user-friendly low cost pesticide contaminant removal methods is still in need for above communities. In this study the suitability of Strychnos potatorum seed flakes (SPSF) on effective removal of diazinon residues in water was investigated. Methods: SPSF was prepared and characterized using SEM and FTIR analysis. Batch adsorption studies, isotherm studies and thermodynamic studies were carried out to determine the removal efficiency of diazinon by SPSF. Findings: The maximum removal of diazinon residues (75.9%) was obtained within 10 min at pH 6. Therefore, SPSF are efficient adsorbent for diazinon removal due to fast and efficient removal of diazinon at ambient conditions. The removal of diazinon residues by SPSF was expressed with Langmuir isotherm model. The maximum adsorption capacity of SPSF, obtained from Langmuir isotherm for diazinon adsorption was found to be 2.5mg/g. Thermodynamic studies revealed that the removal of diazinon by the SPSF was spontaneous and exothermic at relatively low temperatures. Novelty: The SPSF adsorbent is a naturally available cost effective and ecofriendly adsorbent which has not been extensively studied for the removal of frequently used pesticides such as diazinon. The findings of the study revealed that the SPSF adsorbent can be considered as a promising remedy for house hold purification of diazinon contaminated waters.

Keywords: Adsorption; diazinon; Strychnos potatorum seed flakes; water

References

Briceño G, Fuentes MS, Rubilar O, Jorquera M, Tortella G, Palma G. Removal of the insecticide diazinon from liquid media by free and immobilized Streptomyces sp. isolated from agricultural soil. J Basic Microbiol. 2015;55(3):293–302.
Behnam R, Morshed M, Tavanai H, Ghiaci M. Destructive Adsorption of Diazinon Pesticide by Activated Carbon Nanofibers Containing Al2O3 and MgO Nanoparticles. Bulletin of Environmental Contamination and Toxicology. 2013;91(4):475–480. Available from: https://dx.doi.org/10.1007/s00128-013-1064-x
Asgari G, Seidmohammadi A, Esrafili A, Faradmal J, Sepehr MN, Jafarinia M. The catalytic ozonation of diazinon using nano-MgO@CNT@Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology. RSC Advances. 2020;10(13):7718–7731. Available from: https://dx.doi.org/10.1039/c9ra10095d
Pirsaheb M, Dargahi A, Hazrati S, Fazlzadehdavil M. Removal of diazinon and 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions by granular-activated carbon. Desalination and Water Treatment. 2014;52:4350–4355. Available from: https://dx.doi.org/10.1080/19443994.2013.801787
Kamel F, Rowland AS, Park LP, Anger WK, Baird DD, Gladen BC, et al. Neurobehavioral performance and work experience in Florida farmworkers. Environmental Health Perspectives. 2003;111(14):1765–1772. Available from: https://dx.doi.org/10.1289/ehp.6341
Dutta HM, Misquitta D, Khan S. The Effects of Endosulfan on the Testes of Bluegill Fish, Lepomis macrochirus: A Histopathological Study. Archives of Environmental Contamination and Toxicology. 2006;51(1):149–156. Available from: https://dx.doi.org/10.1007/s00244-005-1061-0
Dehghani MH, Kamalian S, Shayeghi M, Yousefi M, Heidarinejad Z, Agarwal S, et al. High-performance removal of diazinon pesticide from water using multi-walled carbon nanotubes. Microchemical Journal. 2019;145:486–491. Available from: https://dx.doi.org/10.1016/j.microc.2018.10.053
Farmany A, Mortazavi SS, Mahdavi H. Ultrasond-assisted synthesis of Fe3O4/SiO2 core/shell with enhanced adsorption capacity for diazinon removal. Journal of Magnetism and Magnetic Materials. 2016;416:75–80. Available from: https://dx.doi.org/10.1016/j.jmmm.2016.04.007
Heydari S, Zare L, Ghiassi H. Plackett-Burman experimental design for the removal of diazinon pesticide from aqueous system by magnetic bentonite nanocomposites. J Appl Res Water Wastewater [Internet]. 2019;6(1):45–50. Available from: http://arww.razi.ac.ir/article_1134.html
Kabwadza-Corner P, Matsue N, Johan E, Henmi T. Mechanism of Diazinon Adsorption on Iron Modified Montmorillonite. American Journal of Analytical Chemistry. 2014;05(02):70–76. Available from: https://dx.doi.org/10.4236/ajac.2014.52011
Qadri H, Bhat RA, Mehmood MA, Dar GH. Fresh Water Pollution Dynamics and Remediation. Fresh Water Pollution Dynamics and Remediation. 2020.
Kumar PS, Vaibhav KN, Rekhi S, Thyagarajan A. Removal of turbidity from washing machine discharge using Strychnos potatorum seeds: Parameter optimization and mechanism prediction. Resource-Efficient Technologies. 2016;2:S171–S176. Available from: https://dx.doi.org/10.1016/j.reffit.2016.09.006
Jayaram K, Murthy IYLN, Lalhruaitluanga H, Prasad MNV. Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloids and Surfaces B: Biointerfaces. 2009;71(2):248–254. Available from: https://dx.doi.org/10.1016/j.colsurfb.2009.02.016
Kumar PS, Deepthi ASLS, Bharani R, Prabhakaran C. Cd(II) and Ni(II) ions from aqueous solution by unmodified Strychnos potatorum seeds. Eur J Environ Civ Eng. 2013;17(4):293–314.
Pavithra KG, Kumar PS, Christopher FC, Saravanan A. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor. Journal of Physics and Chemistry of Solids. 2017;110:379–385. Available from: https://dx.doi.org/10.1016/j.jpcs.2017.07.002
Moussavi G, Hosseini H, Alahabadi A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chemical Engineering Journal. 2013;214:172–179. Available from: https://dx.doi.org/10.1016/j.cej.2012.10.034
Swenson H, Stadie NP. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir. 2019;35(16):5409–5426. Available from: https://dx.doi.org/10.1021/acs.langmuir.9b00154
Saadi R, Saadi Z, Fazaeli R, Fard NE. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering. 2015;32(5):787–799. Available from: https://dx.doi.org/10.1007/s11814-015-0053-7
Weber TW, Chakravorti RK. Pore and solid diffusion models for fixed-bed adsorbers. AIChE Journal. 1974;20(2):228–238. Available from: https://dx.doi.org/10.1002/aic.690200204
Hall KR, Eagleton LC, Acrivos A, Vermeulen T. Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Industrial & Engineering Chemistry Fundamentals. 1966;5(2):212–223. Available from: https://dx.doi.org/10.1021/i160018a011
Xie S, Wang Q. Ac ce pt e d cr t. Appl Surf Sci [Internet]. 2015. Available from: http://dx.doi.org/10.1016/j.apsusc.2015.07.109
Kumar PS, Gayathri R, Senthamarai C, Priyadharshini M, Fernando PSA, Srinath R, et al. Kinetics, mechanism, isotherm and thermodynamic analysis of adsorption of cadmium ions by surface-modified Strychnos potatorum seeds. Korean Journal of Chemical Engineering. 2012;29(12):1752–1760. Available from: https://dx.doi.org/10.1007/s11814-012-0077-1

Copyright

© 2021 Fernando et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.