• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 16, Pages: 736-741

Original Article

Afan-Oromo Named Entity Recognition Using Bidirectional RNN

Received Date:15 January 2022, Accepted Date:11 March 2022, Published Date:02 May 2022


Objectives: This work aims about the development of Afan-Oromo language named entity recognition which widely used in question answering, information extraction and information retrieval aimed at categorizing and predicting tokens of a given corpus into predefined named entity classes like organization, location person and others (non-named entity tags). Methods: In this work, a bidirectional long-short term memory technique is used to model the Afan- Oromo language NER system to recognize and classify words into their named entity classes. Findings: While we evaluated the experiment in cross-validation, we attained a result of precision, recall and f1-measure values 96.7%, 96.2% and 97.3% respectively. We have collected the data from Ethiopian broadcasting Corporation (Afan-Oromo program). Therefore, a newly annotated dataset having 12,479 instances is used for this study. Novelty: Finally we have contributed by boosting a NER system for Afan-Oromo language which is independent of other natural language processing tasks. We proved bidirectional long-short term memory approach can be extended, trained can work for Afan- Oromo language.

Keywords: Bidirectional long shortterm memory; Natural language processing; Softmax; recurrent neural network; Afan-Oromo named entity recognition


  1. Ngo QH, Kechadi T, Le-Khac NA. Domain Specific Entity Recognition With Semantic-Based Deep Learning Approach. IEEE Access. 2021;9:152892–152902. Available from: https://dx.doi.org/10.1109/access.2021.3128178
  2. Li J, Sun A, Han J, Li C. A Survey on Deep Learning for Named Entity Recognition. IEEE Transactions on Knowledge and Data Engineering. 2022;34(1):50–70. Available from: https://dx.doi.org/10.1109/tkde.2020.2981314
  3. Le TA, Burtsev M. A Deep Neural Network Model for the Task of Named Entity Recognition. Social Psychology and Society. 2019;9(1):8–13. doi: 10.18178/ijmlc.2019.9.1.758
  4. Deng N, Fu H, Chen X. Named Entity Recognition of Traditional Chinese Medicine Patents Based on BiLSTM-CRF. Wireless Communications and Mobile Computing. 2021;2021(1):1–12. Available from: https://dx.doi.org/10.1155/2021/6696205
  5. Abafogi AA. Information Engineering and Electronic Business. International Journal of Information Engineering and Electronic Business. 2021;5:51–59. doi: 10.5815/ijieeb.2021.05.05
  6. Alemayehu O, Fenet B. Review on gendered perspective of households participation in agricultural activities in Ethiopia. Journal of Agricultural Extension and Rural Development. 2019;11(1):1–10. Available from: https://dx.doi.org/10.5897/jaerd2018.0985
  7. Bazi IE, Laachfoubi N. Arabic named entity recognition using deep learning approach. International Journal of Electrical and Computer Engineering (IJECE). 2019;9(3):2025. Available from: https://dx.doi.org/10.11591/ijece.v9i3.pp2025-2032
  8. Gardie B, Asemie S, Azezew K. Anyuak Language Named Entity Recognition Using Deep Learning Approach. Indian Journal of Science and Technology. 2021;14(39):2998–3006. Available from: https://dx.doi.org/10.17485/ijst/v14i39.1163
  9. Wei H, Gao M, Zhou A, Chen F, Qu W, Wang C, et al. Named Entity Recognition From Biomedical Texts Using a Fusion Attention-Based BiLSTM-CRF. IEEE Access. 2019;7:73627–73636. Available from: https://dx.doi.org/10.1109/access.2019.2920734
  10. Zhang R, Zhao P, Guo W, Wang R, Lu W. Medical named entity recognition based on dilated convolutional neural network. Cognitive Robotics. 2022;2:13–20. Available from: https://dx.doi.org/10.1016/j.cogr.2021.11.002
  11. Toledo Cv, Dijk Fv, Spruit M. Dutch Named Entity Recognition and De-Identification Methods for the Human Resource Domain. International Journal on Natural Language Computing. 2020;9(6):23–34. Available from: https://dx.doi.org/10.5121/ijnlc.2020.9602
  12. Wang Q, Zhou Y, Ruan T, Gao D, Xia Y, He P. Incorporating dictionaries into deep neural networks for the Chinese clinical named entity recognition. Journal of Biomedical Informatics. 2019;92:103133. Available from: https://dx.doi.org/10.1016/j.jbi.2019.103133
  13. Wu C, Wu F, Qi T, Huang Y. Named Entity Recognition with Context-Aware Dictionary Knowledge. Lecture Notes in Computer Science. 2020;p. 129–143. doi: 10.1007/978-3-030-63031-7_10
  14. Cho M, Ha J, Park C, Park S. Combinatorial feature embedding based on CNN and LSTM for biomedical named entity recognition. Journal of Biomedical Informatics. 2020;103:103381. Available from: https://dx.doi.org/10.1016/j.jbi.2020.103381


© 2022 Gardie & Solomon. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.