• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 16, Pages: 1310-1319

Original Article

An Effective Pomegranate Fruit Classification Based On CNN-LSTM Deep Learning Models

Received Date:12 March 2021, Accepted Date:23 April 2021, Published Date:10 May 2021


Objectives: To employ a deep learning technique that would sort the fruits into normal and abnormal based on the features such as fruit colour, number of fruit spots, and shape of the fruit. Methods: A combined CNN LSTM deep learning model is applied to classify a set of 6519 fruits into two classes namely normal and abnormal. The dataset is an excel file with each record consisting of 9 features. Convolutional Neural Networks (CNN) are applied for deep feature extraction and Long-Short Term Memory (LSTM) is used to detect the class based on extracted features. Findings: The proposed system achieved an accuracy of 98.17%, specificity of 98.65%, sensitivity of 97.77%, and an F1-score of 98.39%. Novelty: The sensitivity of disease detection was less with lesser availability of enhanced detection methods for detecting disease in earlier stages. The issue with these various existing algorithms is that the accuracy was reduced since some sources of errors were not eliminated. Deep Learning delivers methodologies, approaches, and functionalities that can help to resolve analytic and predictive analysis accurately.

Keywords: Deep Learning; CNN LSTM; Classification; Hyperparameters


  1. Kaur R, Kaushal S. Antimicrobial and antioxidant potential of pomegranate (Punica granatum L.) peel. International Journal of Chemical Studies . 2018;3441(3449).
  2. Prajwal T, Pranathi A, SaiAshritha K, Chittaragi NB, Koolagudi SG. Tomato Leaf Disease Detection Using Convolutional Neural Networks. In: 2018 Eleventh International Conference on Contemporary Computing (IC3). (pp. 1-5) Noida. 2018. 10.1109/IC3.2018.8530532
  3. MRaikar M, M M, ChaitraKuchanur, ShantalaGirraddi, PratikshaBenagi. Classification and Grading of Okra-ladies finger using Deep Learning. Procedia Computer Science. 2020;171:2380–2389. Available from: https://doi.org/10.1016/j.procs.2020.04.258
  4. Turkoglu M, Hanbay D, AS. Multi-model LSTM-based convolutional neural networks for detection of apple diseases and pests. Journal of Ambient Intelligence and Humanized Computing. 2019. Available from: https://doi.org/10.1007/s12652-019-01591-w
  5. Ramesh S, Hebbar R, M N, R P, N PB, N S. Plant Disease Detection Using Machine Learning. 2018 International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C). 2018;p. 41–45. doi: 10.1109/ICDI3C.2018.00017
  6. Gowda NC, Kumar S, Majumdar S, Abhishek KN, Sarode P. Android Application on Plant Disease Identification using Tensorflow. International Journal of Engineering and Advanced Technology . 8(5S).
  7. Singh UP, Chouhan SS, Jain S, Jain S. Multilayer Convolution Neural Network for the Classification of Mango Leaves Infected by Anthracnose Disease. IEEE Access. 2019;7:43721–43729. doi: 10.1109/access.2019.2907383
  8. Jadhav SB, VRU, SBP. Identification of plant diseases using convolutional neural networks. International Journal of Information Technology. 2020. Available from: https://doi.org/10.1007/s41870-020-00437-5
  9. Mures¸an H, Oltean M. Fruit recognition from images using deep learning. Acta Univ. Sapientiae, Informatica . 2018;10(1):26–42. doi: arXiv:1712.00580v10
  10. Muhammad NA, Nasir AA, Ibrahim Z, Sabri N. Evaluation of CNN, Alexnet and GoogleNet for Fruit Recognition. Indonesian Journal of Electrical Engineering and Computer Science. 2018;12(2):468–475. Available from: https://dx.doi.org/10.11591/ijeecs.v12.i2.pp468-475
  11. Chakali R. Effective pomegranate plant leaf disease detection using deep learning. International Journal of Circuit, Computing and Networking. 1(2):8–10. Available from: https://www.computersciencejournals.com/ijccn/article/13/1-1-14-682.pdf
  12. Manishabhange HA. Hingoli Wala Smart Farming: Pomegranate Disease Detection Using Image Processing. Procedia Computer ScienceVolume 58. 2015;58:280–288.
  13. Behera SK, Jena L, Rath AK, Sethy PK. Disease Classification and Grading of Orange Using Machine Learning and Fuzzy Logic. 2018 International Conference on Communication and Signal Processing. 2018;p. 678–682. doi: 10.1109/ICCSP.2018.8524415
  14. Dhakate M, B IA. Diagnosis of pomegranate plant diseases using neural network. Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). 2015;p. 1–4. doi: 10.1109/NCVPRIPG.2015.7490056
  15. Krishnakumari K, Sivasankar E, Radhakrishnan S. Hyperparameter tuning in convolutional neural networks for domain adaptation in sentiment classification (HTCNN-DASC) Soft Computing. 2020;24:3511–3527. Available from: https://dx.doi.org/10.1007/s00500-019-04117-w
  16. Popescu O, Strapparava C. Time corpora: Epochs, opinions and changes. Knowledge-Based Systems. 2014;69:3–13. Available from: https://dx.doi.org/10.1016/j.knosys.2014.04.029
  17. Yu C, Qi X, Ma H, He X, Wang C, Zhao Y. LLR: Learning learning rates by LSTM for training neural networks. Neurocomputing. 2020;394:41–50. Available from: https://dx.doi.org/10.1016/j.neucom.2020.01.106
  18. Kantale P, Thakare S. Pomegranate Disease Classification using Ada-Boost Ensemble Algorithm. International Journal of Engineering Research & Technology. 2020;9(9).
  19. Deshpande T, Sengupta S, Raghuvanshi KS. Grading & identification of disease in pomegranate leaf and fruit. International Journal of Computer Science and Information Technologies. 2014;5(3):4638–4645.
  20. R. AK, Rajpurohit VS, Jirage BJ. Pomegranate Fruit Quality Assessment Using Machine Intelligence and Wavelet Features. Journal of Horticultural Research. 2018;26(1):53–60. Available from: https://dx.doi.org/10.2478/johr-2018-0006


© 2021 Vasumathi & Kamarasan.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.