• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 3, Pages: 270-288

Original Article

An efficient hybrid model for cluster head selection to optimize wireless sensor network using simulated annealing algorithm

Received Date:21 December 2020, Accepted Date:17 January 2021, Published Date:01 February 2021


Objective: Energy efficiency aspect in wireless sensor networks (WSN) can be achieved by small sized rechargeable and easily replaceable batteries. The lifetime of wireless sensor network can be improved by identifying the efficient and reliable nodes as a cluster heads using Hybrid Simulated Annealing algorithm. The proposed algorithm identifies cluster head to reduce overhead and is capable of handling high volume of nodes with minimum node death rate. Methods: This study proposed initialization of population vectors using the opposite point procedure, self-adaptive control approach by node mutation rate, crossover rate, node capacity and cluster head allocation Methods. Findings: A case study in the proposed work is found to be better in throughput, accuracy, efficiency, energy utilization, batteries recharge ability and replacement procedures compared to the conventional methods. By the analysis and comparison of the proposed method with existing methods, it is identified that the reduction of the number of dead nodes gradually increases the throughput and lifetime of the nodes with respect to the number of iterations. Novelty: To overcome the limitations of conventional Low Energy Adaptive Clustering Hierarchy (LEACH), harmony search algorithm (HSA), modified HSA and differential evolution, we propose a hybrid optimal model using simulated annealing algorithm which includes a node capability function. It is used to improve the network lifetime of the cluster heads and sensor nodes. The proposed method have capability of batteries recharge ability and replacement option to improve network throughput and reliability of network.

Keywords: Wireless sensor network; Differential Evolution; Low Energy Adaptive Clustering Hierarchy; HAS; modified HAS; simulated annealing algorithm


  1. Naguib A. Multilateration Localization for Wireless Sensor Networks. Indian Journal of Science and Technology. 2020;13(10):1213–1223. Available from: https://dx.doi.org/10.17485/ijst/2020/v13i10/150005
  2. Jothimani A, Edward AS. Implementation of Smart Sensor Interface Network for Water Quality Monitoring in Industry using IoT. Indian Journal of Science and Technology. 2017;p. 1–7. Available from: https://doi.org/ 10.17485/ijst/2017/v10i6/108448
  3. Nighot M, Ghatol A. Energy Aware - Bio-Inspired Hybrid WSN for Area Surveillance (E-BHAS)”. Indian Journal of Science and Technology. 2018;p. 1–17. Available from: https://doi.org/ 10.17485/ijst/2018/v11i20/116606
  4. Maheswari S. Refined Fault Detection Technique in Wireless Sensor Networks. Indian Journal of Science and Technology. 2020;13(06):735–741. Available from: https://dx.doi.org/10.17485/ijst/2020/v13i06/000000
  5. Renuka R, Patil S. Power Efficiency of WSN - A Survey on Usage of AI Algorithms. Indian Journal of Science and Technology. 2017;p. 1–4. Available from: https://doi.org/ 10.17485/ijst/2017/v10i6/109419
  6. Sridevi UK, Sophia S. Deep Learning Model to Predict the Behavior of an Elder in a Smart Home. Indian Journal of Science and Technology. 2019;p. 1–5. Available from: https://doi.org/ 10.17485/ijst/2019/v12i12/143202
  7. Ahmed M, Naeem N, Parveen S. M2DFR: Multi-layer Multipath Data Forwarding Routing Protocol for Underwater Wireless Sensor Network. Indian Journal of Science and Technology. 2019;p. 1–6. Available from: https://doi.org/ 10.17485/ijst/2019/v12i1/139794
  8. Karpagam M. HEED Protocol using a Cluster based V2V Communication”. Indian Journal of Science and Technology. 2019;p. 1–7. Available from: https://doi.org/ 10.17485/ijst/2019/v12i6/141891
  9. Baskar R, Raja PCK. Sinkhole Attack in Wireless Sensor Networks Performance Analysis and Detection Methods”. Indian Journal of Science and Technology. 2017;10(12):1–8. Available from: https://doi.org/ 10.17485/ijst/2017/v10i12/90904
  10. Alharthi M, Abdullah M. XLID: Cross-Layer Intrusion Detection System for Wireless Sensor Networks. Indian Journal of Science and Technology. 2017;12(03):1–4. Available from: https://doi.org/ 10.17485/ijst/2019/v12i3/140767
  11. Saikia M, Hussain MA. Location Dependent Key Predistribution Scheme for Square Grid and Hexagonal Grid”. Indian Journal of Science and Technology. 2017;10(9):1–6. Available from: https://doi.org/ 10.17485/ijst/2017/v10i9/109238
  12. Singh ASR, Khan K. A New Key Management Scheme for Wireless Sensor Networks using an Elliptic Curve”. Indian Journal of Science and Technology. 2017;10(13):1–7. Available from: https://doi.org/ 10.17485/ijst/2017/v10i13/108661
  13. DK, Singh MP. Detection of Sybil Nodes in Wireless Sensor Networks. Indian Journal of Science and Technology. 2017;10(3):1–6. Available from: https://doi.org/ 10.17485/ijst/2017/v10i3/110641
  14. Rout ASK, Rath K. Energy Efficient Dynamic Node Localization Technique in Wireless Sensor Networks. Indian Journal of Science and Technology. 2017;10(15):1–8. Available from: https://doi.org/ 10.17485/ijst/2017/v10i15/93919
  15. Salehian S, Salehian R, , . An event-driven simulation for WSN clustering algorithm. Indian Journal of Science and Technology. 2018;11(13):1–11. Available from: https://dx.doi.org/10.17485/ijst/2018/v11i13/115861
  16. Vijayarani N, Senthilkumar A. Consequence of Space Efficient Secret Sharing for Secure Multi-Path Data Delivery in WSN”. Indian Journal of Science and Technology. 2017;10(10):1–7. Available from: https://doi.org/ 10.17485/ijst/2017/v10i10/86080
  17. Vijayarani N, Senthilkumar A. Multipath Routing Protocols in Wireless Sensor Networks: A Retrospective Review. Indian Journal of Science and Technology. 2017;10(1):1–9. Available from: https://doi.org/ 10.17485/ijst/2017/v10i17/106581
  18. Ramanathan P. Wireless sensor network for monitoring a patient’s physical conditions continuously using Zigbee. Indian Journal of Science and Technology. 2011;4(8):944–946. Available from: https://dx.doi.org/10.17485/ijst/2011/v4i8.20
  19. Sivaranjani S, Mohanraj S, Kavitha V. Intelligent Spectrum Decision ML Algorithms for WSN”. Indian Journal of Science and Technology. 2018;11(19):1–8. Available from: https://doi.org/ 10.17485/ijst/2018/v11i19/123224
  20. Joshi J, Rathod J. Performance Enhancement of LEACH for Secured Data Transmission. Indian Journal of Science and Technology. 2017;10(20):1–4. Available from: https://doi.org/ 10.17485/ijst/2017/v10i20/110311
  21. Prakash NK, Surjith B. FPGA Based Remote Monitoring System in Smart Grids. Indian Journal of Science and Technology. 2017;10(5):1–5. Available from: https://doi.org/ 10.17485/ijst/2017/v10i5/108829
  22. Prasad R, Das A, Laha R. DC-DC Step-Down Converter with Wide Switching Range and Low Ripple Voltage for Wireless Sensor Node Applications”. Indian Journal of Science and Technology. 2018;11(20):1–5. Available from: https://doi.org/ 10.17485/ijst/2018/v11i20/109855
  23. Singh URC, Roy S. Energy Efficient Key Management Scheme using Modified Blom’s Scheme in Wireless Sensor Network. Indian Journal of Science and Technology. 2017;10(21):1–10. Available from: https://doi.org/ 10.17485/ijst/2017/v10i21/111324
  24. Mahendra HN, Mallikarjunaswamy S. Evolution of real-time onboard processing and classification of remotely sensed data. Indian Journal of Science and Technology. 2020;13(20). Available from: https://doi.org/: 10.17485/IJST/v13i20.459
  25. Tam NT, Binh HTT, Dat VT, Lan PN, Vinh LT. Towards optimal wireless sensor network lifetime in three dimensional terrains using relay placement metaheuristics. Knowledge-Based Systems. 2020;206. Available from: https://dx.doi.org/10.1016/j.knosys.2020.106407
  26. Shivaji R, Nataraj KR. Design and implementation of reconfigurable DCT based adaptive PST techniques in OFDM communication system using interleaver encoder. Indian Journal of Science and Technology. 2020;13(29):3008–3020. Available from: https://doi.org/10.17485/IJST/v13i29.976
  27. Madhu TA, Komala M. Design of fuzzy logic controlled hybrid model for the control of voltage and frequency in microgrid. Indian Journal of Science and Technology. 2020;13(35):3612–3629. Available from: https://doi.org/ 10.17485/IJST/v13i35.1510
  28. Mallikarjunaswamy S, Sharmila N. Implementation of an effective hybrid model for islanded microgrid energy management. Indian Journal of Science and Technology. 2020;13(27):2733–2746. Available from: https://dx.doi.org/10.17485/ijst/v13i27.982
  29. Raj KS, Siddesh GK. Interference resilient stochastic prediction based dynamic resource allocation model for cognitive MANETs”. Indian Journal of Science and Technology. 2020;13(41):4332–4350. Available from: https://doi.org/ 10.17485/IJST/v13i41.687
  30. Shah B, Abbas A, Ali G, Iqbal F, Khattak AM, Alfandi O, et al. Guaranteed lifetime protocol for IoT based wireless sensor networks with multiple constraints. Ad Hoc Networks. 2020;104. Available from: https://dx.doi.org/10.1016/j.adhoc.2020.102158
  31. Sharma D, Tomar GS. Enhance PEGASIS Algorithm for Increasing the Life Time of Wireless Sensor Network. Materials Today: Proceedings. 2020;29:372–380. Available from: https://dx.doi.org/10.1016/j.matpr.2020.07.291
  32. Ghosal A, Halder S, Das SK. Distributed on-demand clustering algorithm for lifetime optimization in wireless sensor networks. Journal of Parallel and Distributed Computing. 2020;141:129–142. Available from: https://dx.doi.org/10.1016/j.jpdc.2020.03.014
  33. Umashankar ML, Mallikarjunaswamy S, Ramakrishna MV. Design of High Speed Reconfigurable Distributed Life Time Efficient Routing Algorithm in Wireless Sensor Network. Journal of Computational and Theoretical Nanoscience. 2020;17(9):3860–3866. Available from: https://dx.doi.org/10.1166/jctn.2020.8975
  34. Mahendra HN, Mallikarjunaswamy S. Performance analysis of different classifier for remote sensing application. International Journal of Engineering and Advanced Technology. 2019;9(1):7153–7158. Available from: https://doi.org/10.35940/ijeat.A1879.109119
  35. Satish P, Srikantaswamy M, Ramaswamy N. A Comprehensive Review of Blind Deconvolution Techniques for Image Deblurring. Traitement du Signal. 2020;37(3):527–539. Available from: https://dx.doi.org/10.18280/ts.370321
  36. Luo C, Hong Y, Li D, Wang Y, Chen W, Hu Q. Maximizing network lifetime using coverage sets scheduling in wireless sensor networks. Ad Hoc Networks. 2020;98. Available from: https://dx.doi.org/10.1016/j.adhoc.2019.102037
  37. Kia G, Hassanzadeh A. A multi-threshold long life time protocol with consistent performance for wireless sensor networks. AEU - International Journal of Electronics and Communications. 2019;101:114–127. Available from: https://dx.doi.org/10.1016/j.aeue.2019.01.034
  38. Elkamel R, Messouadi A, Cherif A. Extending the lifetime of wireless sensor networks through mitigating the hot spot problem. Journal of Parallel and Distributed Computing. 2019;133:159–169. Available from: https://dx.doi.org/10.1016/j.jpdc.2019.06.007
  39. Khalily-Dermany M, Nadjafi-Arani MJ, Doostali S. Combining topology control and network coding to optimize lifetime in wireless-sensor networks. Computer Networks. 2019;162. Available from: https://dx.doi.org/10.1016/j.comnet.2019.106859
  40. Yang L, Zhu H, Wang H, Kang K, Qian H. Data censoring with network lifetime constraint in wireless sensor networks. Digital Signal Processing. 2019;92:73–81. Available from: https://dx.doi.org/10.1016/j.dsp.2019.05.004


© 2021 Umashankar et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.