• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 25, Pages: 2128-2136

Original Article

An Efficient Velocity Estimation Approach for Face Liveness Detection using Sparse Optical Flow Technique

Received Date:28 May 2021, Accepted Date:04 July 2021, Published Date:21 July 2021


Objectives: To propose a new liveness detection algorithm using optical flow to ensure the presence of actual live face into a photograph or 2D masks in face recognition biometric security systems. Methods: This work proposes an anti-spoofing model namely Sparse Optical Flow Technique with Velocity Estimation Approach (SOFT_VEA). Optical flow is an effective method for tracking objects in motion. It is adapted in this work to capture facial movements and decide the liveness state. The proposed algorithm considers real faces and two kinds of photo imposters. Findings: From the input video, the motion information of specific facial landmark points is captured by an optical flow algorithm. Then, the velocity of those landmark points is estimated via Euclidean distance. Based on this calculated velocity, the fake face is discriminated from the real face using a threshold value. The Empirical study shows that the proposed face liveness detection model is effective with an accuracy of 88% and Half Total Error Rate (HTER) of 2.45. Novelty: The proposed work is based on real face and photo imposters. The liveness detection algorithm is developed with a novel velocity estimation approach. It is very helpful for biometric security systems.


Biometric security system, Liveness detection, Anti­spoofing, Facial landmarks, Optical flow, Euclidean distance


  1. Hasan M, Mahmud SMH, Li XY. Face Anti-Spoofing Using Texture-Based Techniques and Filtering MethodsJournal of Physics-conference Series2019;p. 110. Available from: 10.1088/1742-6596/1229/1/012044
  2. Bhele S, Mankar V. A Review Paper on Face Recognition TechniquesInternational journal of research in computer science engineering and technology2012;1:22782311.
  3. Parmar D, Mehta B. Face Recognition methods and applicationsInternational Journal of Computer Technology Applications2013;4:8486. Available from: https://arxiv.org/abs/1403.0485
  4. Kollreider K, Fronthaler H, Faraj MI, Bigun J. Real-Time Face Detection and Motion Analysis With Application in “Liveness” AssessmentIEEE Transactions on Information Forensics and Security2007;2(3):548558. Available from: https://dx.doi.org/10.1109/tifs.2007.902037
  5. Shin J, Kim S, Kang S, Lee SW, Paik J, Besmaabidi. MongiAbidi Optical flow-based real-time object tracking using non-prior training active feature modeReal-Time Imaging2005;11:204218. Available from: 10.1016/j.rti.2005.03.006
  6. Kollreider K, Fronthaler H, Bigun J. Non-intrusive liveness detection by face imagesImage and Vision Computing2009;27(3):233244. Available from: https://dx.doi.org/10.1016/j.imavis.2007.05.004
  7. Bao W, Li H, Li N, Jiang W. A liveness detection method for face recognition based on optical flow fieldproceedings of International Conference on Image Analysis and Signal Processing2009;p. 233236. Available from: 10.1109/IASP.2009.5054589
  8. Fujita K, Hanada T, Kitazawa Y, Kawabe A. A debris image tracking using optical flow algorithmAdvances in Space Research2012;49(5):10071018. Available from: https://dx.doi.org/10.1016/j.asr.2011.12.010
  9. Feng L, Po LM, Li Y, Xu X, Yuan F, Cheung TCH, et al. Integration of image quality and motion cues for face anti-spoofing: A neural network approachJournal of Visual Communication and Image Representation2016;38:451460. Available from: https://dx.doi.org/10.1016/j.jvcir.2016.03.019
  10. Pragadeeswari CK, Yamuna G, Beham GY. Optical flow detection and tracking of gauzes and cancer cellsMaterials Today: Proceedings2020;33:35583563. Available from: https://dx.doi.org/10.1016/j.matpr.2020.05.525
  11. Parveen S, Ahmad SM, Abbas NH, Adnan WA, Hanafi M, Naeem N. Face liveness detection using dynamic local ternary pattern (DLTP) First Computing2016;5(2). Available from: https://doi.org/10.3390/computers5020010


© 2021 Nanthini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.