• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 35, Pages: 2796-2806

Original Article

An Image Classification and Retrieval Hybrid Model for Larger Healthcare Datasets using Deep Learning

Received Date:23 April 2023, Accepted Date:18 August 2023, Published Date:15 September 2023


Objectives: The objective of this work is to obtain an efficient medical image retrieval and classification from a larger healthcare datasets using Novel approach. Methods: In this study five different classes of Medical images are taken for input, features are extracted using GLCM (Grey Level Co-occurrence Matrix) by image attributes such as dissimilarity, correlation, homogeneity, contrast, ASM, and energy. The photos are examined at several angles (0, 45, 90, and 135) to extract the characteristics using the layers. The received feature vectors are input into the most often used deep learning models Artificial Neural Networks (ANN) and Convolution Neural Networks (CNN) for image classification. Then CNN model is integrated with a deep learning model based on Long-Short Term Memory (LSTM), which incorporates additional layers into its structure and works on large datasets. Further the retrieval performance is improved by Euclidean Distance Technique. Findings: Performance evaluation is performed by comparing and analyzing the experimental findings of proposed methods, ANN, CNN and CNN-LSTM yields the retrieval accuracy of 97.79%, 98.78% and 99.4%. The Precision, Recall and F1-Score are also compared, and they are more accurate when picture classification is performed on larger healthcare datasets. Novelty: The additional feature extraction using GLCM and the proposed hybrid model can extract better medical image features, and achieve higher classification accuracy compared with earlier image classification models.

Keywords: ContentBased Image Retrieval; Grey Level Cooccurrence Matrix; Artificial Neural Networks; Convolution Neural Networks; LongShort Term Memory; Cloud Computing


  1. Selvaraj S, Thangarajan R, Ramya R, Nandhini N. Identification of Kidney Related Disease Using Deep Learning. In: Applied and Computational Engineering, Proceedings of the 4th International Conference on Computing and Data Science (CONF-CDS 2022). (Vol. 2, pp. 700-707) 2023.
  2. Pittaras N, Giannakopoulos G, Stamatopoulos P, Karkaletsis V. Content-based and Knowledge-enriched Representations for Classification Across Modalities: A Survey. ACM Computing Surveys. 2023;55(14s):1–40. Available from: https://doi.org/10.1145/3583682
  3. Mathuravalli SMD, Rajendran N, Bagyalakshmi K, Dilip R, Ranjan A, Das I, et al. Deep Learning Techniques For Exoticism Mining From Visual Content Based Image Retrieval. Journal of Pharmaceutical Negative Results. 2023;14(01):925–933. Available from: https://www.pnrjournal.com/index.php/home/article/view/7889
  4. López-Sánchez M, Hernández-Ocaña B, Chávez-Bosquez O, Hernández-Torruco J. Supervised Deep Learning Techniques for Image Description: A Systematic Review. Entropy. 2023;25(4):1–22. Available from: https://doi.org/10.3390/e25040553
  5. Ghaleb MS, Ebied HM, Shedeed HA, Tolba MF. Content-Based Image Retrieval Using Fused Convolutional Neural Networks. In: AISI 2022: Proceedings of the 8th International Conference on Advanced Intelligent Systems and Informatics 2022, Lecture Notes on Data Engineering and Communications Technologies. Springer International Publishing. 152:260–270.
  6. Chethan K, Bhandarkar R. An Efficient Medical Image Retrieval and Classification using Deep Neural Network. Indian Journal of Science and Technology. 2020;13(39):4127–4141. Available from: https://doi.org/10.17485/IJST/v13i39.1621
  7. Praveena HD, Guptha NS, Kazemzadeh A, Parameshachari BD, Hemalatha KL. Effective CBMIR System Using Hybrid Features-Based Independent Condensed Nearest Neighbor Model. Journal of Healthcare Engineering. 2022;2022:1–9. Available from: https://doi.org/10.1155/2022/3297316
  8. Shamna NV, Musthafa BA. Feature Extraction Method using HoG with LTP for Content-Based Medical Image Retrieval. International journal of electrical and computer engineering systems. 2023;14(3):267–275. Available from: https://doi.org/10.32985/ijeces.14.3.4
  9. Vasudeva R, Chandrashekara SN. A Comprehensive Study on Image Retrieval Algorithms of Cloud Storage for Information Extraction in Health Care System. International Journal of Computing and Digital Systems. 2022;12(01):1315–1328. Available from: https://dx.doi.org/10.12785/ijcds/1201106
  10. Rashad M, Afifi I, Abdelfatah M. RbQE: An Efficient Method for Content-Based Medical Image Retrieval Based on Query Expansion. Journal of Digital Imaging. 2023;36:1248–1261. Available from: https://doi.org/10.1007/s10278-022-00769-7
  11. Chieregato M, Frangiamore F, Morassi M, Baresi C, Nici S, Bassetti C, et al. A hybrid machine learning/deep learning COVID-19 severity predictive model from CT images and clinical data. Scientific Reports. 2022;12(4329):1–15. Available from: https://doi.org/10.1038/s41598-022-07890-1
  12. Mohsen S, Ali AM, El-Rabaie ESMM, Elkaseer A, Scholz SG, Hassan AMA. Brain Tumor Classification Using Hybrid Single Image Super-Resolution Technique With ResNext101_32× 8d and VGG19 Pre-Trained Models. IEEE Access. 2023;11:55582–55595. Available from: https://doi.org/10.1109/ACCESS.2023.3281529
  13. Menaouer B, Dermane Z, Kebir NEH, Matta N. Diabetic Retinopathy Classification Using Hybrid Deep Learning Approach. SN Computer Science. 2022;3(357). Available from: https://doi.org/10.1007/s42979-022-01240-8
  14. Jena B, Saxena S, Nayak GK, Saba L, Sharma N, Suri JS. Artificial intelligence-based hybrid deep learning models for image classification: The first narrative review. Computers in Biology and Medicine. 2021;137:104803. Available from: https://doi.org/10.1016/j.compbiomed.2021.104803
  15. Zhang H, Luo K, Deng R, Li S, Duan S. Deep Learning-Based CT Imaging for the Diagnosis of Liver Tumor. Computational Intelligence and Neuroscience. 2022;2022:1–7. Available from: https://doi.org/10.1155/2022/3045370
  16. Priyadarsini MJP, kotecha K, Rajini GK, Hariharan K, Raj KU, Ram VB, et al. Lung Diseases Detection Using Various Deep Learning Algorithms. Journal of Healthcare Engineering. 2023;2023:1–13. Available from: https://doi.org/10.1155/2023/3563696
  17. Hu H, Zheng W, Zhang X, Zhang X, Liu J, Hu W, et al. Content-based gastric image retrieval using Convolutional Neural Networks. International Journal of Imaging Systems and Technology. 2021;31(1):439–449. Available from: https://doi.org/10.1002/ima.22470


© 2023 Vasudeva & Chandrashekara. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.