• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 23, Pages: 2370-2380

Original Article

Analysis and Comparison of Artifact Removal Techniques for Epilepsy EEG Signal

Received Date:02 January 2024, Accepted Date:06 May 2024, Published Date:03 June 2024


Objective: Accurate epilepsy diagnosis demands precise EEG analysis, hindered by non-neuronal artifacts. This study evaluates artifact removal methods, specifically Independent Component Analysis (ICA) and Empirical Mode Decomposition (EMD), aiming to enhance signal quality. We introduce a hybrid approach, combining ICA and EMD. Methods: ICA and EMD are applied to preprocess epilepsy EEG recordings. Quantitative evaluation metrics, including Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Standard Deviation (SD), are calculated and compared for both methods. Findings: ICA outperforms EMD, showing higher SNR and PSNR, notably in BONN and CHB-MIT datasets. ICA achieves significant reductions in MSE, RMSE, and SD. The hybrid approach surpasses existing methods, supported by quantitative data. Novelty: Rigorous application of ICA and EMD to diverse datasets quantitatively establishes ICA's superiority. The hybrid approach, backed by quantitative evidence, proves effective beyond epilepsy EEG. Conclusion: This abstract provides clear, quantitative support for ICA's superiority and the hybrid approach's efficacy, offering valuable insights into artifact removal in EEG analysis.

Keywords: Epilepsy, Artifact removal, EEG, ICA, DWT, EMD, Performance metrics


  1. Arafat T, Miron G, Strauss I, Fahoum F. Electrodiagnostic artifacts due to neurostimulation devices for drug resistant epilepsy. Epilepsy & Behavior Reports. 2022;20:1–7. Available from: https://dx.doi.org/10.1016/j.ebr.2022.100566
  2. Wang G, Teng C, Li K, Zhang Z, Yan X. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition. IEEE Journal of Biomedical and Health Informatics. 2016;20(5):1301–1308. Available from: https://dx.doi.org/10.1109/jbhi.2015.2450196
  3. Yang B, Zhang T, Zhang Y, Liu W, Wang J, Duan K. Removal of Electrooculogram Artifacts from Electroencephalogram Using Canonical Correlation Analysis with Ensemble Empirical Mode Decomposition. Cognitive Computation. 2017;9(5):626–633. Available from: https://dx.doi.org/10.1007/s12559-017-9478-0
  4. Mur A, Dormido R, Duro N. An Unsupervised Method for Artefact Removal in EEG Signals. Sensors. 2019;19(10). Available from: https://dx.doi.org/10.3390/s19102302
  5. Jiang X, Bian GB, Tian Z. Removal of Artifacts from EEG Signals: A Review. Sensors. 2019;19(5). Available from: https://dx.doi.org/10.3390/s19050987
  6. Yadav A, Choudhry MS, Jin Z. A new approach for ocular artifact removal from EEG signal using EEMD and SCICA. Cogent Engineering. 2020;7(1):1–17. Available from: https://dx.doi.org/10.1080/23311916.2020.1835146
  7. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. 2000;101:e215–e220. Available from: https://dx.doi.org/10.1161/01.cir.101.23.e215
  8. Soroush MZ, Tahvilian P, Nasirpour MH, Maghooli K, Sadeghniiat-Haghighi K, Harandi SV, et al. EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms. Frontiers in Physiology. 2022;13:1–27. Available from: https://dx.doi.org/10.3389/fphys.2022.910368
  9. Mika D, Budzik G, Józwik J. Single Channel Source Separation with ICA-Based Time-Frequency Decomposition. Sensors. 2020;20(7). Available from: https://dx.doi.org/10.3390/s20072019
  10. Urigüen JA, Garcia-Zapirain B. EEG artifact removal—state-of-the-art and guidelines. Journal of Neural Engineering. 2015;12(3). Available from: https://dx.doi.org/10.1088/1741-2560/12/3/031001
  11. Albaqami H, Hassan GM, Datta A. Automatic Detection of Abnormal EEG Signals Using WaveNet and LSTM. Sensors. 2023;23(13). Available from: https://dx.doi.org/10.3390/s23135960
  12. Satyender, Dhull SK, Singh KK. EEG Artifact Removal Using Canonical Correlation Analysis and EMD-DFA based Hybrid Denoising Approach. Procedia Computer Science. 2023;218:2081–2090. Available from: https://dx.doi.org/10.1016/j.procs.2023.01.184
  13. Islam MK, Rastegarnia A, Yang Z. A Wavelet-Based Artifact Reduction From Scalp EEG for Epileptic Seizure Detection. IEEE Journal of Biomedical and Health Informatics. 2016;20(5):1321–1332. Available from: https://dx.doi.org/10.1109/jbhi.2015.2457093


© 2024 Mamatha & Hariprasad. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.