• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 18, Pages: 869-880

Original Article

Anticipated Performance and Air Pollution Tolerance Indices for the Establishment of Green Belt Development in an Industrial Area

Received Date:13 December 2021, Accepted Date:23 March 2022, Published Date:25 May 2022


Background: To identify the plant species tolerance levels in an industrial area by assessing Anticipated Performance Index (API) and Air Pollution Tolerance Index (APTI) to establish a green belt in the industrial area. Methods: A survey on local species was conducted in and around the study areas. Seventeen plant species were chosen for an evaluation of tolerant species based on their occurrence and dominance in the study areas. Standard methods were applied for estimation of biochemical parameters such as Cell Sap pH, Relative Water Content (RWC), Total Chlorophyll Content (TCC), and Ascorbic Acid (AA) and were used to compute the APTI. API is assessed based on socioeconomic and biological characteristics. Correlation coefficient test was performed to gain the information about relationship between variables. Findings: The results revealed that APTI positively correlated with biochemical parameters in control, negatively correlated with in industrial samples and except ascorbic acid. Ascorbic acid is one of the critical elements in biochemical parameters. It changes plant species sensitivity to tolerance. In API, based on social, biological, and physical characteristics (+, -) codes were used to classify poor, moderate, good, very good, best, and excellent. In the present study Ficus benghalensis as excellent (87.25%) in the control area and best (93.75%) in industrial area; Syzygium cumini species best (93.75%) in control and excellent (87.25%) in industrial areas. In comparison, Mimusops elengi reported moderate (56.25%) to the poor (50) in control and the industrial areas. Novelty: This study was carried out to determine the impact of air pollution on plant species which exhibit either sensitivity or tolerance depend on their endurance level. The identified list of the tree species helps to minimize air pollution levels in theindustrial area and can be used to establish green belt development.

Keywords: Anticipated Performance Index (API); Air Pollution Tolerance Index (APTI); Tolerance; Green Belt; Biochemical Parameters


  1. Punit S, Rai A. Evaluating Air Pollution Tolerance Index (APTI) of Two Plant Species from Industrial Area of Jodhpur. International Journal of Energy and Environmental Science. 2021;6(1):11. Available from: https://dx.doi.org/10.11648/j.ijees.20210601.12
  2. Sahu C, Sahu SK. Ambient air quality and air pollution index of Sambalpur: a major town in Eastern India. International Journal of Environmental Science and Technology. 2019;16(12):8217–8228. Available from: https://dx.doi.org/10.1007/s13762-019-02383-7
  3. Shi T, Hu Y, Liu M, Li C, Zhang C, Liu C. How Do Economic Growth, Urbanization, and Industrialization Affect Fine Particulate Matter Concentrations? An Assessment in Liaoning Province, China. International Journal of Environmental Research and Public Health. 2020;17(15):5441. Available from: https://dx.doi.org/10.3390/ijerph17155441
  4. Shah K, Amin NU, Ahmad I, Shah S, Hussain K. Dust particles induce stress, reduce various photosynthetic pigments and their derivatives in Ficus benjamina: a landscape plant. International Journal of Agricultural Biology. 2017;19:1469–1474.
  5. Seyyedneja SM, Niknejad M, Koochak H. A Review of Some Different Effects of Air Pollution on Plants. Research Journal of Environmental Sciences. 2011;5(4):302–309. Available from: https://dx.doi.org/10.3923/rjes.2011.302.309
  6. Do O, Adebiyi SA. Assessment of Vehicular Pollution of Roadside Soils in Ota Metropolis. International Journal of Civil & Environmental Engineering. 2012;12(4):40–46.
  7. Aleadelat W, Ksaibati K. A comprehensive approach for quantifying environmental costs associated with unpaved roads dust. Journal of Environmental Economics and Policy. 2018;7(2):130–144. Available from: https://dx.doi.org/10.1080/21606544.2017.1374214
  8. Minaj A, Sinha P, Bhatia, Fuloria A. Effect of Ozone on biotic stress tolerance potential of wheat. Manage. Water, Energy, and Bio-Resources. In: Era Climate Change: Emerging Issues and Challenges. (pp. 299-313) Springer International Publishing. 2015.
  9. Ghozlene I, Mohammed-Reda D, Rachid R, Houria B. ROS, and Triticum Durum's antioxidant system after water stress. Annual Research & Review in Biology. 2014;4(8):1241–1249. Available from: http://dx.doi.org/10.9734/ARRB/2014/5321
  10. Bahari AA, Sokhtesaraei R, Chaghazardi HR, Masoudi F, Nazarli H. Effect of Water Deficit Stress and Foliar Application of Salicylic Acid on Antioxidants Enzymes Activity in Leaves of Thymus Daenensis Subsp. Lancifolius. Cercetari Agronomice in Moldova. 2015;48(1):57–67. Available from: https://dx.doi.org/10.1515/cerce-2015-0017
  11. Gopamma D, Rao J, K, Kumar S, K, SN. Anticipated Performance Index of tree species as an indicator for Green Belt development in traffic density area. Indian Journal of Environmental Protection. 2021;41(7):803–810.
  12. Penella C, Nebauer SG, Quiñones A, Bautista AS, López-Galarza S, Calatayud A. Some rootstocks improve pepper tolerance to mild salinity through ionic regulation. Plant Science. 2015;230:12–22. Available from: https://dx.doi.org/10.1016/j.plantsci.2014.10.007
  13. Gałuszka A, Migaszewski ZM, Podlaski R, Dołęgowska S, Michalik A. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environmental Monitoring and Assessment. 2011;176(1-4):451–464. Available from: https://dx.doi.org/10.1007/s10661-010-1596-z
  14. Seo YS, Park SY, Kim MY, Kim JH, Park JY, Yim HJ, et al. Lack of difference among terlipressin, somatostatin, and octreotide in the control of acute gastroesophageal variceal hemorrhage. Hepatology. 2014;60(3):954–963. Available from: https://dx.doi.org/10.1002/hep.27006
  15. Agbaire PO, Akoporhonor E. The effects of air pollution on plants around the vicinity of the data steel Company. Ovwian- Aladja, Delta State. Journal of Environmental Science, Toxicology and Food Technology. 2014;8(7):61–65.
  16. Pandey AK, Pandey M, Tripathi BD. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city. Ecotoxicology and Environmental Safety. 2016;134:358–364. Available from: https://dx.doi.org/10.1016/j.ecoenv.2015.08.028
  17. Swami A, Bhatt D, J. Effects of automobile pollution on Sal (Shorea robusta) and Rohini (Mallotus phillipinensis) at Asarori, Dehradun. Himalayan J. Environ. Zool. 2004;18(1):57–61.
  18. Shannigrahi AS, Sharma R, Fukushima T. Air Pollution Control By Optimal Green Belt Development Around The Victoria Memorial Monument, KOLKATA (INDIA) International Journal of Environmental Studies. 2003;60(3):241–249. Available from: https://dx.doi.org/10.1080/0020723022000008202
  19. Tripathi AK, Gautam M. Biochemical parameters of plants as indicators of air pollution. J Environ Biol. 2007;28:127–159.
  20. Dali M, Gupta S, Datta JK. Anticipated performance index of some tree species considered green belt development in an urban area. International Research Journal of Plant Science. 2011;2(4):99–106.
  21. Marimuthu K, Magesh P. Air pollution tolerance index induced by biochemical components in plants. International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6(5):362–364.
  22. Nadgórska–Socha A, Kandziora-Ciupa M, Trzęsicki M, Barczyk G. Air pollution tolerance index and heavy metal bioaccumulation in selected plant species from urban biotopes. Chemosphere. 2017;183:471–482. Available from: https://dx.doi.org/10.1016/j.chemosphere.2017.05.128
  23. Lohe R, Tyagi B, Singh V, Tyagi PK, Khanna DR, Bhutiani R. A comparative study for air pollution tolerance index of some terrestrial plant species. Global Journal of Environmental Science and Management. 2015;1(4):315–324. doi: 10.7508/gjesm.2015.04.006
  24. Swami A, Chauhan D. Impact of air pollution-induced by automobile exhaust pollution on air pollution tolerance index (APTI) on few species of plants. International Journal of Science and Research. 2015;4:342–343.
  25. Jyoti JS, Ds J. Evaluation of air pollution tolerance index of selected plant species along roadsides in Thiruvananthapuram, Kerala . Journal of Environment and Biology. 2010;31:379–386.
  26. Tak AA, Kakde UB. Assessment of Air Pollution Tolerance Index of plants: a comparitive study. International Journal of Pharmacy and Pharmaceutical Sciences. 2017;9(7):83. Available from: https://dx.doi.org/10.22159/ijpps.2017v9i7.18447
  27. Agbaire P, Esiefarienrhe E. Air Pollution tolerance indices (apti) of some plants around Otorogun Gas Plant in Delta State, Nigeria. Journal of Applied Sciences and Environmental Management. 2010;13(1):11–14. Available from: https://dx.doi.org/10.4314/jasem.v13i1.55251
  28. Qingzhu LI, Yansu LI, Chaohan LI, Xianchang YU. Enhanced Ascorbic Acid Accumulation through Overexpression of Dehydroascorbate Reductase Confers Tolerance to Methyl Viologen and Salt Stresses in Tomato. Czech Journal of Genetics and Plant Breeding. 2012;48(2):74–86.
  29. Carr A, Maggini S. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. Available from: https://dx.doi.org/10.3390/nu9111211
  30. Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP. Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology. 2017;44:153–160. Available from: https://dx.doi.org/10.1016/j.copbio.2017.01.011
  31. Bulley S, Laing W. The regulation of ascorbate biosynthesis. Current Opinion in Plant Biology. 2016;33:15–22. Available from: https://dx.doi.org/10.1016/j.pbi.2016.04.010
  32. Venkatesh J, Park SW. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies. 2014;55(1):1–19. Available from: https://dx.doi.org/10.1186/1999-3110-55-38
  33. Panda LRL, Aggarwal RK, Bhardwaj DR. A review on Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) Current World Environment. 2018;13(1):55–65. Available from: https://dx.doi.org/10.12944/cwe.13.1.06
  34. Pathak V, Tripathi BD, Mishra VK. Evaluation of Anticipated Performance Index of some tree species for green belt development to mitigate traffic generated noise. Urban Forestry & Urban Greening. 2011;10(1):61–66. doi: 10.1016/j.ufug.2010.06.008
  35. Ogunkunle CO, Suleiman LB, Oyedeji S, Awotoye OO, Fatoba PO. Assessing the air pollution tolerance index and anticipated performance index of some tree species for biomonitoring environmental health. Agroforestry Systems. 2015;89(3):447–454. doi: 10.1007/s10457-014-9781-7
  36. Chavan BL, Sonwane NS. Anticipated Performance Index (API) of some tree species grown in Aurangabad city. International Journal for Environment Rehabilitation and Conservation. 2012;3(2):9–13.
  37. Gupta S, Mondal D, Datta JK. Anticipated performance index of some tree species considered for green belt development in an urban area. International Research Journal of Plant Science. 2011;2(4):99–106.
  38. Weber JA, Grulke NE. Response of Stem Growth and Function to Air Pollution. In: Plant Stems. (pp. 343-363) Elsevier. 1995.


© 2022 Gopamma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.