• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 40, Pages: 2041-2046

Original Article

Assessment of Rectal Temperature using Infrared Thermal Camera in Pigs

Received Date:12 February 2022, Accepted Date:01 September 2022, Published Date:18 October 2022

Abstract

Objective: To develop substitute measures for assessing accurate Rectal Temperature with an Infrared Thermal Imaging Camera in pigs. Methods: In the experiment, three different genetic groups were used: Hampshire, crossbred (Hampshire X Niang-Megha) and Niang-Megha. Apparently healthy 90 adult pigs (1-3 years) consisting 30 numbers from different group were used for each season; namely, summer (July) and winter (December). Thermal images were taken at different anatomical body sites. Appropriate anatomical sites were selected based on close association with rectal temperature (Trectal ). Developed a constant correction factors (CF) as a substitute measures using selected sites and validated for assessing accurate Trectal . Findings: Base of the Ear Temperature (Tear) and Eye Temperature (Teye) were highly correlated with Trectal . The correction factor was developed as substitute measures for assessing rectal temperature using base of the ear and eye temperature. Accordingly, the rectal temperature was recorded ranging from 36.45 to 38.25◦C with Tear and 35 to 38.2◦C with Teye based on the developed correction factor. Novelty: Developed correction factors as a substitute measures for accurate assessment of rectal temperature by non-invasive techniques by measuring base of the ear and eye temperature with an infrared thermal imaging camera.

Keywords: Rectal temperature; Correction factor; Infrared thermography; Swine; Disease

References

  1. Baida B, Swinbourne AM, Barwick J, Leu ST, Wettere WHV. Technologies for the automated collection of heat stress data in sheep. Animal Biotelemetry. 2021;9:1–15. Available from: https://doi.org/10.1186/s40317-020-00225-9
  2. Zhang Z, Zhang H, Liu T. Study on body temperature detection of pig based on infrared technology: A review. Artificial Intelligence in Agriculture. 2019;1:14–26. Available from: https://doi.org/10.1016/j.aiia.2019.02.002
  3. Olasehinde O. Infrared Thermography and Machine Learning in Livestock Production. International Journal of Advanced Research and Review. 2021;6:38–57.
  4. Stukelj M, Hajdinjak M, Pusnik I. Stress-free measurement of body temperature of pigs by using thermal imaging – Useful fact or wishful thinking. Computers and Electronics in Agriculture. 2022;193:106656. Available from: https://doi.org/10.1016/j.compag.2021.106656
  5. Witkowska-Piłaszewicz O, Maśko M, Domino M, Winnicka A. Infrared Thermography Correlates with Lactate Concentration in Blood during Race Training in Horses. Animals. 2021;10(11):2072. Available from: https://doi.org/10.3390/ani10112072
  6. Marquez HP, Ambrose DJ, Schaefer AL, Cook NJ, Bench CJ. Infrared thermography and behavioral biometrics associated with estrus indicators and ovulation in estrus synchronized dairy cows housed in tiestalls. Journal of dairy science. 2019;102(5):4427–4440. Available from: https://doi.org/10.3168/jds.2018-15221
  7. Ferreira MS, Goes RHdTeBd, Martinez AC, Gandra JR, Junior WAG, Bega AM, et al. Infrared thermography and feeding behavior of lambs fed increasing levels of safflower grains. Rev. bras. saude prod. anim. 2020;21. Available from: https://doi.org/10.1590/s1519-99402121232020
  8. Franchi GA, Jensen MB, Herskin MS, Mcneill DM, Phillips CJC. Assessing response to dry-off in dairy cows kept outdoors using spontaneous behaviours and infrared thermography—a pilot study. Tropical Animal Health and Production. 2021;53(1):1–4. Available from: https://doi.org/10.1007/s11250-020-02487-0
  9. Abuelo A, Gandy JC, Neuder L, Brester J, Sordillo LM. Short communication: Markers of oxidant status and inflammation relative to the development of claw lesions associated with lameness in early lactation cows. Journal of Dairy Science. 2016;99(7):5640–5648. Available from: https://doi.org/10.3168/jds.2015-10707
  10. García-Muñoz A, Singh N, Leonardi C, Silva-Del-Río N. Effect of hoof trimmer intervention in moderately lame cows on lameness progression and milk yield. Journal of Dairy Science. 2017;100(11):9205–9214. Available from: https://doi.org/10.3168/jds.2016-12449
  11. Siewert C, Dänicke S, Kersten S, Brosig B, Rohweder D, Beyerbach M, et al. Difference method for analysing infrared images in pigs with elevated body temperatures. Zeitschrift für Medizinische Physik. 2014;24(1):6–15. Available from: https://doi.org/10.1016/j.zemedi.2013.11.001
  12. Joy A, Taheri S, Dunshea FR, Leury BJ, Digiacomo K, Osei-Amponsah R, et al. Non-invasive measure of heat stress in sheep using machine learning techniques and infrared thermography. Small Ruminant Research. 2022;207:106592. Available from: https://doi.org/10.1016/j.smallrumres.2021.106592
  13. Freitas ACD, Vega WH, Quirino CR, Junior AB, David CM, Geraldo AT, et al. Surface temperature of ewes during estrous cycle measured by infrared thermography. Theriogenology. 2018;119:245–251. Available from: https://doi.org/10.1016/j.theriogenology.2018.07.015
  14. Vicentini RR, Montanholi YR, Veroneze R, Oliveira AP, Lima MLP, Ujita A, et al. Infrared thermography reveals surface body temperature changes during proestrus and estrus reproductive phases in Gyr heifers (Bos taurus indicus) Journal of Thermal Biology. 2020;92:102662. Available from: https://doi.org/10.1016/j.jtherbio.2020.102662
  15. Petry A, Mcgilvray W, Rakhshandeh AR, Rakhshandeh AR. Technical note: Assessment of an alternative technique for measuring body temperature in pigs1. Journal of Animal Science. 2017;95(7):3270–3274. Available from: https://doi.org/10.2527/jas.2017.1566
  16. Rocha LM, Devillers N, Maldague X, Kabemba FZ, Fleuret J, Guay F, et al. Validation of Anatomical Sites for the Measurement of Infrared Body Surface Temperature Variation in Response to Handling and Transport. Animals. 2019;9(7):425. Available from: https://doi.org/10.3390/ani9070425
  17. Farrar KL, Field AE, Norris SL, Jacobsen KO. Comparison of Rectal and Infrared Thermometry Temperatures in Anesthetized Swine (<i>Sus scrofa</i>) Journal of the American Association for Laboratory Animal Science. 2020;59(2):221–225. Available from: https://doi.org/10.30802/AALAS-JAALAS-19-000119
  18. Barbieri S, Talamonti Z, Nannoni E, Heinzl E, Minero M, Canali E. Use of thermography in pigs: relationship between surface and core temperature. Veterinaria Italiana. 2021;57(1):79–82. Available from: https://doi.org/10.12834/VetIt.1077.5873.2
  19. Schmid SM, Büscher W, Steinhoff-Wagner J. Suitability of Different Thermometers for Measuring Body Core and Skin Temperatures in Suckling Piglets. Animals. 2021;11(4):1004. Available from: https://doi.org/10.3390/ani11041004
  20. Tabuaciri P, Bunter KL, Graser HU. Thermal imaging as a potential tool for identifying piglets at risk. InAGBU Pig Genetics Workshop. Animal Genetics and Breeding Unit. 2012;p. 23–30.
  21. Schmitt O, O’driscoll K. Use of infrared thermography to noninvasively assess neonatal piglet temperature. Translational Animal Science. 2021;5(1). Available from: https://doi.org/10.1093/tas/txaa208
  22. Schmidt M, Lahrmann KH, Ammon C, Berg W, Schön P, Hoffmann G. Assessment of body temperature in sows by two infrared thermography methods at various body surface locations. Journal of Swine Health and Production. 2013;21(4):203–209.
  23. Ricci GD, Silva-Miranda KOD, Titto CG. Infrared thermography as a non-invasive method for the evaluation of heat stress in pigs kept in pens free of cages in the maternity. Computers and Electronics in Agriculture. 2019;157:403–409. Available from: https://doi.org/10.1016/j.compag.2019.01.017
  24. Church JS, Hegadoren PR, Paetkau MJ, Miller CC, Regev-Shoshani G, Schaefer AL, et al. Influence of environmental factors on infrared eye temperature measurements in cattle. Research in Veterinary Science. 2014;96(1):220–226. Available from: https://doi.org/10.1016/j.rvsc.2013.11.006
  25. Soerensen DD, Pedersen LJ. Infrared skin temperature measurements for monitoring health in pigs: a review. Acta Veterinaria Scandinavica. 2015;57(1):1–11. Available from: http://dx.doi.org/10.1186/s13028-015-0094-2
  26. Zhang Z, Wang H, Liu T, Wang Y, Zhang H, Yuan F, et al. Accurate detection method of pig's temperature based on non‐point source thermal infrared image. CAAI Transactions on Intelligence Technology. 2021;6(3):312–323. Available from: https://doi.org/10.1049/cit2.12017

Copyright

© 2022 Kadirvel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.