• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 33, Pages: 2589-2600

Original Article

Automatic Clustering by Spider Monkey Optimisation with Tabu Search Algorithm

Received Date:02 June 2023, Accepted Date:03 July 2023, Published Date:01 September 2023


Objective: To design automatic data clustering algorithm that find number of clusters automatically with balance between exploration and exploitation search space. Methods: This work proposes Spider monkey optimisation with tabu search algorithm named as SMOTS for automatic data clustering. In this algorithm, the local search of spider monkey is improved with tabu search algorithm. For better results, compact separated index with Gaussian kernel distribution is introduced as a fitness function. The experiments are performed on Vowel, Iris, Wine, Seed, E.coli and Thyroid data sets. The results are validated with cluster optimality, inter and intra cluster distances with 5 well known and 7 recently published algorithms like DE, GA, GWO, WOA, PSO, AHPSOM, ACICA, ACDCSA, AC-MeanABC, TMKGSO, Black Hole k-Means, and EOAK-means. To test the statistical significance of the proposed algorithm an unpaired t-test is performed between SMOTS and second best algorithms on mean inter cluster distance. Findings: In comparison with well-known clustering algorithm on six data set SMOTS produced 100%, 33.33%, 83.33% accurate results on cluster optimality, intra and inter cluster distance respectively. In comparison with recently published algorithms on six data set SMOTS produced 50%, 66.66%, 50% accurate results on cluster optimality, intra and inter cluster distance respectively. The hypothesis testing results shows that p-value of the t-test is less than 1% except vowel data set means SMOTS is highly statistically significant compare to second best algorithms. Novelty: In real life data set information about number of cluster is rarely available and this produced faulty results. Proposed method can process data without any prior information of number of clusters and data distribution with accurate results. Keywords: Spider Monkey Optimisation; Tabu Search; Automatic Clustering; Neighbour Search; Swarm Intelligence 2


  1. Patel VP, Rawat MK, Patel AS. Local neighbour spider monkey optimization algorithm for data clustering. Evolutionary Intelligence. 2023;16(1):133–151. Available from: https://doi.org/10.1007/s12065-021-00647-1
  2. Patel VP, Rawat MK, Patel AS. Analysis of Search Space in the Domain of Swarm Intelligence. In: PM, ST, CT, PH, GNN., eds. Algorithms for Intelligent Systems. (pp. 99-109) Springer Singapore. 2021.
  3. Sharma M, Chhabra JK. Sustainable automatic data clustering using hybrid PSO algorithm with mutation. Sustainable Computing: Informatics and Systems. 2019;23:144–157. Available from: https://doi.org/10.1016/j.suscom.2019.07.009
  4. Elaziz MA, Nabil N, Ewees AA, Lu S. Automatic Data Clustering based on Hybrid Atom Search Optimization and Sine-Cosine Algorithm. 2019 IEEE Congress on Evolutionary Computation (CEC). 2019;p. 2315–2337. Available from: https://doi.org/10.1109/CEC.2019.8790361
  5. Agbaje MB, Ezugwu AE, Els R. Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm. IEEE Access. 2019;7:184963–184984. Available from: https://doi.org/10.1109/ACCESS.2019.2960925
  6. Alomoush MAAW. Automatic Data Clustering Based Mean Best Artificial Bee Colony Algorithm. Comput Mater Contin . 2021;68(2):1575–1593. Available from: https://doi.org/10.32604/cmc.2021.015925
  7. Sgm AK, Algamal ZY, Qasim OS. Enhancement of K-means clustering in big data based on equilibrium optimizer algorithm. Journal of Intelligent Systems. 2023;32(1). Available from: https://doi.org/10.1515/jisys-2022-0230
  8. Pal SS, Pal SS. Black Hole and k-Means Hybrid Clustering Algorithm. In: BH, NJ, NB, PD., eds. Advances in Intelligent Systems and Computing. (Vol. 2020, pp. 403-413) Springer Singapore. 2020.
  9. Bansal JC, Sharma H, Jadon SS, Clerc M. Spider Monkey Optimization algorithm for numerical optimization. Memetic Computing. 2014;6(1):31–47. Available from: https://doi.org/10.1007/s12293-013-0128-0
  10. Dhal KG, Das A, Ray S, Das S. A Clustering Based Classification Approach Based on Modified Cuckoo Search Algorithm. Pattern Recognition and Image Analysis. 2019;29(3):344–359. Available from: https://doi.org/10.1134/S1054661819030052
  11. Glover F. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research. 1986;13(5):533–549. Available from: https://doi.org/10.1016/0305-0548(86)90048-1
  12. Das S, Abraham A, Konar A. Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm. Pattern Recognition Letters. 2008;29(5):688–699. Available from: https://doi.org/10.1016/j.patrec.2007.12.002
  13. Turi RH. Clustering-based color image segmentation. Monash University, Australia. 2001.
  14. Dua D, Graff C. UC Irvine Machine Learning Repository. 2017. Available from: http://archive.ics.uci.edu/ml
  15. Aliniya Z, Mirroshandel SA. A novel combinatorial merge-split approach for automatic clustering using imperialist competitive algorithm. Expert Systems with Applications. 2019;117:243–266. Available from: https://doi.org/10.1016/j.eswa.2018.09.050


© 2023 Patel & Vishwamitra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.