• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 11, Pages: 1036-1042

Original Article

Comparison of Energy Consumption in Pervaporation with Molecular Sieve Processes for Ethanol Water Azeotrope Separation

Received Date:26 September 2023, Accepted Date:06 February 2024, Published Date:29 February 2024


Objective: To compare energy consumption in pervaporation with conventional molecular sieve adsorption process for production of unhydrous ethanol using commercial pervaporation membrane P64 PEPSI C4064.1C. Method/Analysis: Experimental pervaporation system setup with commercial pervaporation membrane P64 PEPSI C4064.1C is used for separation of ethanol water mixture (95% (v/v) ethanol) at vacuum 10-15 torr. For analysis Karl Fischer titration method is used. Based on experimental results electrical as well as thermal energy consumption for 100 KLPD capacity pilot plant is calculated and compared with conventional molecular sieve adsorption process. Findings: Comparison for commercial membrane P64 PEPSI C4064.1C with reported data shows that separation factor as well as total flux related to separation factor is consistent with other hydrophilic membranes. The energy consumption for pervaporation process includes the external heating and cooling required for the feed and permeate streams, as well as the electrical power associated with pumps for re-circulating feed and maintaining vacuum. To separate 100 KLPD ethanol mixture with 95 vol % ethanol by pervaporation process, 10500 kg steam is required whereas 50500 kg steam is required for separation by adsorption process. Total electrical energy for pervaporation process is 76 Kw as compared to 270 kw required for adsorption process. Novelty: This study demonstrated that Electrical energy required for pervaporation process is almost 72 % less than molecular sieve adsorption process. There is no extra energy requirement for External additive addition and separation/sieve regeneration. Based on these results a pervaporation based separation process plant with low energy consumption can be designed for separation of ethanol water mixture.

Keywords: Pervaporation, Energy, Membrane, Molecular sieve, Azeotrope


  1. Hanchate N, Kulshreshtha P, Mathpati CS. Optimization, scale-up and cost estimation of dehydration of ethanol using temperature swing adsorption. Journal of Environmental Chemical Engineering. 2019;7(2):102938. Available from: https://doi.org/10.1016/j.jece.2019.102938
  2. Castro-Muñoz R, Boczkaj G. Pervaporation Zeolite-Based Composite Membranes for Solvent Separations. Molecules. 2021;26(5):1–19. Available from: https://doi.org/10.3390/molecules26051242
  3. Conde-Mejía C, Jiménez-Gutiérrez A. Analysis of ethanol dehydration using membrane separation processes. Open Life Sciences. 2020;15(1):122–132. Available from: https://doi.org/10.1515/biol-2020-0013
  4. Khazaeia A, Mohebbia V, Behbahania RM, Ramazani SAA. Energy consumption in pervaporation, conventional and hybrid processes to separate toluene and i-octane. Chemical Engineering and Processing - Process Intensification. 2018;128:46–52. Available from: https://doi.org/10.1016/j.cep.2018.04.009
  5. Vane LM. Review of pervaporation and vapor permeation process factors affecting the removal of water from industrial solvents. Journal of Chemical Technology & Biotechnology. 2020;95(3):495–512. Available from: https://doi.org/10.1002/jctb.6264
  6. Soares LS, Vieira ACF, Fidler F, Fritz ARM, Luccio MD. Pervaporation as an alternative for adding value to residues of oyster (Crassostrea gigas) processing. Separation and Purification Technology. 2020;232:115968. Available from: https://doi.org/10.1016/j.seppur.2019.115968
  7. Davletbaeva IM, Sazonov OO, Malygin AV, Zakirov IN, Gumerov AM, Klinov AV, et al. Organophosphorus Polyurethane Ionomers as Water Vapor Permeable and Pervaporation Membranes. Polymers. 2021;13(9):1–21. Available from: https://doi.org/10.3390/polym13091442
  8. Trubyanov MM, Shablykin DN, Mokhnachev NA, Sergeeva MS, Vorotyntsev AV, Petukhov AN, et al. A hybrid batch distillation/membrane process for high purification part 1: Energy efficiency and separation performance study for light impurities removal. Separation and Purification Technology. 2020;241:116678. Available from: https://doi.org/10.1016/j.seppur.2020.116678
  9. Xie Z, Ng D, Hoang M, Zhang J, Gray S. Study of Hybrid PVA/MA/TEOS Pervaporation Membrane and Evaluation of Energy Requirement for Desalination by Pervaporation. International Journal of Environmental Research and Public Health. 2018;15(9):1–18. Available from: https://doi.org/10.3390/ijerph15091913
  10. Peng P, Lan Y, Liang L, Jia K. Membranes for bioethanol production by pervaporation. Biotechnology for Biofuels. 2021;14(1):1–33. Available from: https://doi.org/10.1186/s13068-020-01857-y
  11. Imad M, Castro-Muñoz R. Ongoing Progress on Pervaporation Membranes for Ethanol Separation. Membranes. 2023;13(10):1–25. Available from: https://doi.org/10.3390/membranes13100848
  12. Castro-Munoz R. Pervaporation-based membrane processes for the production of non-alcoholic beverages. Journal of Food Science and Technology. 2019;56(5):2333–2344. Available from: https://doi.org/10.1007/s13197-019-03751-4


© 2024 Nangare et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.