• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 26, Pages: 2152-2163

Original Article

Computer Aided Detection System using Entropy Based Segmentation as Decision Support for Detection of Neoplasms and Comparison of Feature Spaces for Classification

Received Date:22 December 2020, Accepted Date:14 July 2021, Published Date:27 July 2021


Objective: To design a computer aided detection system for the early detection of the breast cancer from the mammograms as it can assist the doctors in the diagnosis. Methodology: The proposed method used in the design of Computer-Aided Detection (CAD) is based the on using the textural differences of the abnormal and normal mammograms to detect the breast cancer. The Gabor Features and gray-level co-occurrence matrix (GLCM) features are extracted from the region of interest of the segmented mammograms using the Entropy based segmentation. The Support Vector Machine (SVM) classifier is used for classifying the mammograms into the cancerous and non-cancerous cases. The 35 number of normal and abnormal mammograms are taken from the Mammographic Image Analysis Society (MIAS) data set. The MIAS database is chosen as it carries more challenging data because it carries lot of unwanted tissues and flesh part included in it which has the intensity level more than the micro-calcifications. Findings: The classification accuracies obtained are 92.98% and 98.11% using Gabor and gray-level co-occurrence matrix features respectively. The sensitivity achieved with the gray-level co-occurrence matrix features is 100% which shows no missed cancerous case. The classification accuracy is higher using gray-level co-occurrence matrix features as compared to the Gabor features which shows superiority of these features in capturing the texture of the mammograms. Novelty: The removal of the pectoral muscle is an important pre-processing step. Only with the proper elimination of the pectoral muscle, the segmentation of the mammograms is possible. The method proposed to remove the pectoral muscle in this paper removed the pectoral muscles from all the mammograms used in the study. The entropy based segmentation and the technique of the removal of the non-contributing features outperforms other CAD systems in the literature available. These are very promising results for successful design of a Computer-aided detection system for early detection of the breast cancer that can be put to clinical trials or used for the double reading.

Keywords: Breast Cancer; Computer Aided Detection System; Entropy based Segmentation; Gabor Features; GrayLevel CoOccurrence Matrix Features


  1. Maitra IK, Nag S, Bandyopadhyay SK. Technique for preprocessing of digital mammogram. Computer Methods and Programs in Biomedicine. 2012;107(2):175–188. Available from: https://dx.doi.org/10.1016/j.cmpb.2011.05.007
  2. Ma WY, Manjunath BS. EdgeFlow: a technique for boundary detection and image segmentation. IEEE Transactions on Image Processing. 2000;9(8):1375–1388. Available from: https://dx.doi.org/10.1109/83.855433
  3. McLoughlin KJ, Bones PJ, Karssemeijer N. Noise Equalization for Detection of Microcalcification Clusters in Direct Digital Mammogram Images. IEEE Transactions on Medical Imaging. 2004;23(3):313–320. Available from: https://dx.doi.org/10.1109/tmi.2004.824240
  4. Laine AF, Schuler S, Fan J, Huda W. Mammographic feature enhancement by multiscale analysis. IEEE Transactions on Medical Imaging. 1994;13(4):725–740. Available from: https://dx.doi.org/10.1109/42.363095
  5. Gonzalez RC, Wood RE. Digital Image Processing (4). Pearson Publishers. 2018.
  6. Jiang M, Zhang S, Li H, Metaxas DN. Computer-Aided Diagnosis of Mammographic Masses Using Scalable Image Retrieval. IEEE Transactions on Biomedical Engineering. 2015;62(2):783–792. Available from: https://dx.doi.org/10.1109/tbme.2014.2365494
  7. Rangayyan RM, El-Faramawy NM, Desautels JEL, Alim OA. Measures of acutance and shape for classification of breast tumors. IEEE Transactions on Medical Imaging. 1997;16(6):799–810. Available from: https://dx.doi.org/10.1109/42.650876
  8. Haralick RM, Shanmugam K, Dinstein I. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973;SMC-3(6):610–621. Available from: https://dx.doi.org/10.1109/tsmc.1973.4309314
  9. Doi K. Computer-aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential. Computerized Medical Imaging and Graphics. 2017;31(4):198–211. Available from: 10.1016/j.compmedimag.2007.02.002
  10. Li H, Wang Y, Ray KJ, Shih-Chung B, Matthew TF. Computerized Radiographic Mass Detection-Part I: Lesion Site Selection by Morphological Enhancement and Contextual Segmentation. IEEE Transactions On Medical Images. 2001;20(4). Available from:
  11. Ganesan K, Acharya UR, Chua CK, Min LC, Abraham KT, Ng KH. Computer-Aided Breast Cancer Detection Using Mammograms: A Review. IEEE Reviews in Biomedical Engineering. 2013;6:77–98. Available from: https://dx.doi.org/10.1109/rbme.2012.2232289
  12. Suckling J, Parker J, Dance D. The Mammographic Image Analysis Society Digital Mammogram Database. Experta Medica, Int.Congress Series. 1994;1069:375–378. Available from: https://doi.org/10.1007/s11042-019-7185-4
  13. Hanmandlu M, Khan AA, Saha A. A Novel Algorithm for Pectoral Muscle Removal and Auto-Cropping of Neoplasmic Area from Mammograms. Proceedings of the IEEE International Conference on Computational Intelligence and Computing Research. 2012;p. 1–5. Available from: 10.1109/ICCIC.2012.6510254
  14. Bovik AC, Clark M, Geisler WS. Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1990;12(1):55–73. Available from: https://dx.doi.org/10.1109/34.41384
  15. Jain AK, Farrokhnia F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition. 1991;24(12):1167–1186. Available from: https://dx.doi.org/10.1016/0031-3203(91)90143-s
  16. Turner MR. Texture-discrimination by Gabor functions. Biological Cybernetics. 1986;55(2-3):71–82.
  17. Bovik AC. Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Transactions on Signal Processing. 1991;39(9):2025–2043. Available from: https://dx.doi.org/10.1109/78.134435
  18. Hajare PS, Vaibhav VD. Breast Tissue Classification Using Gabor Filter, PCA and Support Vector Machine. International Journal of Advancement in Electronics and Computer Engineering (IJAECE). 2012;1:116–119.
  19. Mencattini A, Salmeri M, Rabottino G, Salicone S. Metrological Characterization of a CADx System for the Classification of Breast Masses in Mammograms. IEEE Transactions on Instrumentation and Measurement. 2010;59(11):2792–2799. Available from: https://dx.doi.org/10.1109/tim.2010.2060751
  20. Tai SC, Chen ZS, Tsai WT. An Automatic Mass Detection System in Mammograms Based On Complex Texture Features. IEEE Journal of Biomedical and Health Informatics. 2014;18(2). Available from: 10.1109/JBHI.2013.2279097
  21. Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications. 2015;42(3):990–1002. Available from: https://dx.doi.org/10.1016/j.eswa.2014.09.020
  22. Saad G, Khadour A, Kanafani Q. ANN and Adaboost application for automatic detection of microcalcifications in breast cancer. The Egyptian Journal of Radiology and Nuclear Medicine. 2016;47(4):1803–1814. Available from: https://dx.doi.org/10.1016/j.ejrnm.2016.08.020
  23. Cruz TN, Cruz TM, Santos WP. Detection and classification of mammary lesions using artificial neural networks and morphological wavelets. IEEE Latin America Transactions. 2018;16(3):926–932. Available from: https://dx.doi.org/10.1109/tla.2018.8358675
  24. Ting FF, Tan YJ, Sim KS. Convolutional neural network improvement for breast cancer classification. Expert Systems with Applications. 2019;120:103–115. Available from: https://dx.doi.org/10.1016/j.eswa.2018.11.008
  25. Heidari M, Mirniaharikandehei S, Liu W, Hollingsworth AB, Liu H, Zheng B. Development and Assessment of a New Global Mammographic Image Feature Analysis Scheme to Predict Likelihood of Malignant Cases. IEEE Transactions on Medical Imaging. 2020;39(4):1235–1244. Available from: https://dx.doi.org/10.1109/tmi.2019.2946490
  26. Shen T, Gou C, Wang J, Wang FY. Simultaneous Segmentation and Classification of Mass Region From Mammograms Using a Mixed-Supervision Guided Deep Model. IEEE Signal Processing Letters. 2020;27:196–200. Available from: https://dx.doi.org/10.1109/lsp.2019.2963151
  27. Szekely N, Toth N, Pataki B. A Hybrid System for Detecting Masses in Mammographic Images. IEEE Transactions on Instrumentation and Measurement. 2006;55(3):944–952. Available from: https://dx.doi.org/10.1109/tim.2006.870104


© 2021 Khan & Arora. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.