• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 33, Pages: 2711-2730

Original Article

Corrosion inhibition and thermodynamic studies on carbon steel in well water by ethanolic extract of Alpinia officinarum leaves (Lesser galangal)-Zn2+

Received Date:10 August 2021, Accepted Date:11 September 2021, Published Date:20 October 2021


Objectives: To examine the thermodynamics and kinetics of Alpinia officinarum’s (AO) inhibitory response on carbon steel (CS) corrosion in well water. Weight-loss (WL), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) methods and various pH levels are utilized to calculate the inhibition efficiency (IE) and corrosion rate (CR). Methods: WL and PDP and EIS techniques were performed to assess the corrosion inhibition and adsorption capacity of an ethanolic extract of AO leaves on the CS in well water. SEM and AFM techniques were analyzed to explore the creation of a safe layer onto the CS surface. Findings: The maximum IE of 93% is attained from the WL study at 303K. For the AO-Zn2+ system, when the temperature is increased from 303K to 343K, CR is also increased and IE is decreased. Arrhenius plots show a straight line, indicating the effect of temperatures on the CR. PDP findings indicate that the AO-Zn2 + system performs as a mixed-type inhibitor. The ΔGads values are less than -20KJ/mol, signifying that physisorption on the CS surface has occurred. The positive values of ΔH demonstrate AO leaves are adsorbing endothermically onto CS surface. The high adsorption of ethanolic extract of AO leaves on the CS surface in well water is reflected by positive activation energy values. Langmuir model is the best fit for the adsorption of ethanolic extract of AO leaves. Novelty: The nature of the adsorption process on the CS surface in well water was investigated by thermodynamic parameters (ΔGads, qads, ΔSads, ΔH) and activation energy (Ea) using a combined inhibitor (AO-Zn2+) system. The regression coefficient (R2) values were calculated using the various adsorption isotherms to determine the pattern of inhibition on the CS surface. The F-test and synergism parameters were used to establish the synergistic inhibition (SI) impact existing between ethanolic extract of AO leaves and Zn2+.

Green corrosion inhibitor, thermodynamics, kinetics, PDP, EIS, SEM, AFM, FTIR, adsorption models, synergism parameters


  1. Cookey GA, Vopnu T, Maduelosi JN. Thermodynamic and kinetic studies of the corrosion inhibition of mild steel in 0.5 M HCl using napoleonae imperialis leaves extract. Journal of chemical Society of Nigeria. 2021;46(3):474–0481. doi: 10.2478/auoc-2018-0015
  2. Deyab MA, Osman M , Elkholy AE, Heakal FET. Green approach towards corrosion inhibition of carbon steel in produced oilfield water using lemongrass extract. RSC Advances. 2017;7(72):45241–45251. Available from: https://dx.doi.org/10.1039/c7ra07979f
  3. Marzorati S, Verotta L, Trasatti S. Green Corrosion Inhibitors from Natural Sources and Biomass Wastes. Molecules. 2018;24(1):48. Available from: https://dx.doi.org/10.3390/molecules24010048
  4. Rani BEA, Basu BBJ. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. International Journal of Corrosion. 2012;2012:1–15. Available from: https://dx.doi.org/10.1155/2012/380217
  5. Redovnikovic RI, Berkovic K, Kovac S, Furac VJ. Natural honey and black radish juice as tin corrosion inhibitors. Corrosion Science. 2008;50(5):1498–1504. Available from: https://dx.doi.org/10.1016/j.corsci.2008.01.013
  6. Cherrak K, Benhiba F, Sebbar NK, Essassi EM, Taleb M, Zarrouk A, et al. Corrosion inhibition of mild steel by new Benzothiazine derivative in a hydrochloric acid solution: Experimental evaluation and theoretical calculations. Chemical Data Collections. 2019;22:100252. doi: 10.1016/j.cdc.2019.100252
  7. Mahmou C, Bouissoui EM, Bouhlal F, Labjar N, Merimi I, Kaya S, et al. Synergistic effects of aminotris(methylene phosphonic acid) and Zn2+ on the carbon steel corrosion in acid media: An experimental and theoretical approach. International Journal of Corrosion and Scale Inhibition. 2021;10(3):1245–1281. doi: 10.17675/2305-6894-2021-10-3-24
  8. Papavinasam S. Evaluation and Selection of Corrosion Inhibitors. Uhlig’s. Corrosion. Handbook. 2000;p. 1169–1178. Available from: https://doi.org/10.1002/9780470872864.ch84
  9. A SF, A HB. Aqueous extract of propolis as corrosion inhibitor for carbon steel in aqueous solutions. African Journal of Pure and Applied Chemistry. 2013;7(10):350–359. Available from: https://dx.doi.org/10.5897/ajpac2013.0524
  10. Ghanyl NAA, El-Shenawy AE, Hussien WAM. The Inhibitive Effect of Some Amino Acids on the Corrosion Behaviour of 316L Stainless Steel in Sulfuric Acid Solution. Modern Applied Science. 2011;5(4):19–29. Available from: https://dx.doi.org/10.5539/mas.v5n4p19
  11. Eddy NO, Ibok UJ, Ita BI. QSAR and quantum chemical studies on the inhibition potentials of some amino acids for the corrosion of mild steel in H2SO4. Journal of Computational Methods in Sciences and Engineering. 2011;11(1-2):25–43. Available from: https://dx.doi.org/10.3233/jcm-2011-0290
  12. Wu JF, Wang Q, Zhang ST, Yin LL. Methionine as Corrosion Inhibitor of Brass in O<sub>2</sub>-Free 1M NaOH Solution. Advanced Materials Research. 2011;308-310(310):241–245. Available from: https://dx.doi.org/10.4028/www.scientific.net/amr.308-310.241
  13. Samy A, Raja AS, Rajendran S. Inhibition of corrosion of carbon steel in well water by arginine -Zn2+ system. Journal of Electrochemical Science and Engineering. 2012;2(2):91–104.
  14. Rajendran SRA, Sathiyabama J, Angel P. Corrosion Control by Amino acetic acid (Glycine)-An Overview. International Journal of Innovative research in Science Engineering and Technology. 2014;3(4):11455–11467. Available from: https://www.researchgate.net/publication/283085106_Corrosion_Control_by_Aminoacetic_acid_Glycine_an_Overview
  15. Mohan R, Selvaraj SK, Sakthivel A, Amalraj AJ, Sahayaraj JW, Regis A, et al. Corrosion inhibition by Phthalic acid Zn2+ system. International Journal of Engineering Research and Applications. 2014;4(5):22–27. Available from: http://www.ijera.com/papers/Vol4_issue5/Version%204/D045042227.pdf
  16. Rahim A, Kassim J. Recent Development of Vegetal Tannins in Corrosion Protection of Iron and Steel. Recent Patents on Materials Sciencee. 2008;1(3):223–231. Available from: https://dx.doi.org/10.2174/1874464810801030223
  17. Aralu CC, Chukwuemeka-Okorie HO, Akpomie KG. Inhibition and adsorption potentials of mild steel corrosion using methanol extract of Gongronema latifoliuim. Applied Water Science. 2021;11(2):1–7. Available from: https://dx.doi.org/10.1007/s13201-020-01351-8
  18. Hynes NRJ, Selvaraj RM, Mohamed T, Mukesh AM, Olfa K, Nikolova MP. Aerva lanata flowers extract as green corrosion inhibitor of low-carbon steel in HCl solution: an in vitro study. Chemical Papers. 2021;75(3):1165–1174. Available from: https://dx.doi.org/10.1007/s11696-020-01361-5
  19. Bennett JM, Jahanmir J, Podlesny JC, Balter TL, Hobbs DT. Scanning force microscope as a tool for studying optical surfaces. Applied Optics. 1995;34(1):213. Available from: https://dx.doi.org/10.1364/ao.34.000213
  20. Marrese M, Guarino V, Ambrosio L. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering. Journal of Functional Biomaterials. 2017;8(1):7. Available from: https://dx.doi.org/10.3390/jfb8010007
  21. Florez-Frias EA, Barba V, Lopez-Sesenes R, Landeros-Martínez LL, Ríos JPFDl, Casales M, et al. Use of a Metallic Complex Derived from Curcuma Longa as Green Corrosion Inhibitor for Carbon Steel in Sulfuric Acid. International Journal of Corrosion. 2021;2021:1–13. Available from: https://dx.doi.org/10.1155/2021/6695299
  22. Kavitha N, Manjula P, Anandhakumar N. Syneristic effect of C. Papaya Leaves Extract-Zn2+ in Corrosion Inhibition of Mild Steel in Aqueous Medium. Research Journal of Chemical Sciences. 2014;4(8):88–93.
  23. Rajendran S, Jeyasundari J, Usha P, Selvi JA, Narayanasamy B, Regis APP, et al. Corrosion Behaviour of Aluminium in the Presence of an Aqueous Extract of Hibiscus Rosa-sinensis. Portugaliae Electrochimica Acta. 2009;27(2):153–164. doi: 10.4152/pea.200902153
  24. Vennila T, Muneeswaran T, Manjula M, Stalin B, Vairamuthu J. Synergism between sodium molybdate and binary inhibitor (BHI + Zn2+) on corrosion inhibition of mild steel in aqueous medium containing 60 ppm Cl− ion. Materials Research Express. 2019;6(11):1165g6. doi: 10.1088/2053-1591/ab5233
  25. Sakthivel M, Kumar C, Selvaraj MR, Micheal SK, Amalraj SM, Sahayaraj AJ, et al. Corrosion Inhibition by an Aqueous Extract of Sansevieria Roxburghiana for Carbon Steel in 60 ppm of Chloride Environment. Chemical Science Review and Letters. 2014;3(11S):188–199.
  26. Epshiba R, Regis A, Clarebel RB, Mary SP, Alphonsa JK. Influence of Aloe vera extract on corrosion inhibition of mild steel in well water. Re TeLL. 2015;15:1–11.
  27. Sangeetha M, Rajendran S, Sathiyabama J, Krishnaveni A, Shanthy P, Manimaran N, et al. Corrosion Inhibition by an Aqueous Extract of Phyllanthus Amarus. Portugaliae Electrochimica Acta. 2011;29(6):429–444. doi: 10.4152/pea.201106429
  28. Al-Senani G, Al-Saeedi S, Almufarij R. Green corrosion inhibitors for carbon steel by green leafy vegetables extracts in 1 M HCl. Oriental Journal of Chemistry. 2015;31(4):2077–2086. doi: 10.13005/ojc/310428
  29. Fathabadi HE, Ghorbani M, Ghartavol HM. Corrosion Inhibition of Mild Steel with Tolyltriazole. Materials Research. 2021;24(4):1–16. doi: 10.1590/1980-5373-mr-2020-0395
  30. Tomilawo BA, Olasehinde EF, Ani JU, Obagboye FO, Asegbeloyin JN, Obi IO, et al. Corrosion control of mild steel in sulphuric acid by athyrium filix-femina leaf extract green inhibitor. Chemical Science Review and Letters. 2020;9(36):869–885.
  31. Al-Senani GM. Corrosion Inhibition of Carbon Steel in acidic chloride medium by Cucumis Sativus (cucumber) Peel Extract. International Journal of Electrochemical Science. 2016;11(1):291–302.
  32. Praba KL, Rajam S, Subramania A. The effect of aqueous extract of Adathoda vasica leaves on corrosion inhibition of aluminium in alkaline solution. Journal of chemical and pharmaceutical Research. 2012;4(1):337–347.
  33. Gaber A, Rahal HT, Rifai M. Green Approach towards Corrosion Inhibition in Hydrochloric Acid Solutions. Biointerface Research in Applied Chemistry. 2021;11(6):14185–14195.
  34. Fouda AEAS, Abd El-Maksoud SA, El-Sayed EH, Elbaz HA, Abousalem AS. Experimental and surface morphological studies of corrosion inhibition on carbon steel in HCl solution using some new hydrazide derivatives. RSC Advances. 2021;11(22):13497–13512. doi: 10.1039/d1ra01405f
  35. Zhang QB, Hua YX. Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid. Electrochimica Acta. 2009;54(6):1881–1887.
  36. Begum AAS, Vahith RMA, Kotra V, Shaik MR, Abdelgawad A, Awwad EM, et al. Spilanthes acmella Leaves Extract for Corrosion Inhibition in Acid Medium. Coatings. 2021;11(1):106. doi: 10.3390/coatings11010106
  37. Fakih A, Aziz M, Sirat HM. Turmeric and ginger as green inhibitors of mild steel corrosion in acidic medium. Journal of Materials and Environmental Science. 2015;6(5):1480–1487.
  38. Thacker H, Ram V. Phoenix Dactylifera L. Extracts as Green Corrosion Inhibitor for Aluminum in Acidic Medium. Journal of Scientific Research. 2021;65(03):142–149. doi: 10.37398/jsr.2021.650317
  39. Santhini N, Jeyaraj T. The inhibition effect of [3-(4-hydroxy-3-methoxy-phenyl)-1-phenylpropenone] on the corrosion of the aluminium in alkaline medium. Journal of Chemical and Pharmaceutical Research. 2012;4(7):3550–3556.
  40. Ogunleye OO, Arinkoola AO, Eletta OA, Agbede OO, Osho YA, Morakinyo AF, et al. Green corrosion inhibition and adsorption characteristics of Luffa cylindrica leaf extract on mild steel in hydrochloric acid environment. Heliyon. 2020;6(1):e03205. doi: 10.1016/j.heliyon.2020.e03205
  41. Adejo SO, Yiase SG, Ahile UJ, Tyohemba TG, Gbertyo JA. Inhibitory effect and adsorption parameters of extract leaves of Portulaca oleracea of corrosion of aluminium in H2SO4 solution. Archives of Applied Science Research. 2013;5(1):25–32.
  42. Popova A, Sokolova E, Raicheva S, Christov M. AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corrosion Science. 2003;45(1):33–58. doi: 10.1016/s0010-938x(02)00072-0
  43. Thiruppathy J, Ragu M, Ganesanm, Sivasubramanian VK, Karuppasamy P, Rajendran T. Inhibitive action of calcium lignosulfonate on the corrosion of mild steel in sulfuric acid medium. International Journal of Scientific and Research Publications. 2014;4(9):474–481.
  44. Sheeba SR, Raja SA, Sathiyabama J, Prathipa V. Green approach to corrosion inhibition of carbon steel in well water by the extract of Polyalthia longifolia. Journal of applicable chemistry. 2014;3(5):2055–2065.
  45. Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A. Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics. 2004;83(1):129–134. doi: 10.1016/j.matchemphys.2003.09.020
  46. Li Wh, He Q, Zhang St, Pei Cl, Hou Br. Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium. Journal of Applied Electrochemistry. 2008;38(3):289–295. doi: 10.1007/s10800-007-9437-7
  47. Asokan T, Sekar M, Thangavelu C, Sudhakaran R, Kasilingam T. Inhibition and co-adsorption behaviour of Alkylbenzyldimethylammonium chloride on carbon steel in potable water system. Der Chemica Sinica. 2014;5(6):56–63.
  48. Sangeetha M, Rajendran S, Sathiyabama J, Prabhakar P. Influence of Murraya koenigii (curry leaves) extract on the corrosion inhibition of carbon steel in HCl solution. Journal of Natural Product and Plant Resources. 2012;2(5):601–610.
  49. Bakri EY, Boudalia M, Echihi S, Harmaoui A, Sebhaoui J, Elmsellem H, et al. Performance and theoretical study on corrosion inhibition of new triazolopyrimidine derivative for carbon steel in hydrochloric acid. Journal of Materials and Environmental Sciences. 2017;8(2):378–388.
  50. Sribharathy V, Rajendran S, Rengan P, Nagalakshmi R. Corrosion Inhibition by an Aqueous Extract Of Aloe Vera (L.) Burm F.(Liliaceae) European Chemical Bulletin. 2013;2(7):471–476.
  51. Sharmila A, Prema AA, Sahayaraj PA. Influence of Murraya koenigii (curry leaves) extract on the corrosion inhibition of carbon steel in HCL solution. Rasayan Journal of Chemistry. 2010;3(1):74–81.
  52. Leçe HD, Emregül KC, Atakol O. Difference in the inhibitive effect of some Schiff base compounds containing oxygen, nitrogen and sulfur donors. Corrosion Science. 2008;50(5):1460–1468. doi: 10.1016/j.corsci.2008.01.014
  53. Antony N, Sherine HB, Rajendran S. Inhibition and Biocide Actions of Sodium Dodecyl Sulfate-Zn2+ System for the Corrosion of Carbon Steel in Chloride Solution. Portugaliae Electrochimica Acta. 2010;28(1):1–14. doi: 10.4152/pea.201001001
  54. Touir R, Dkhireche N, Ebn Touhami M, Sfaira M, Senhaji O, Robin JJ, et al. Study of phosphonate addition and hydrodynamic conditions on ordinary steel corrosion inhibition in simulated cooling water. Materials Chemistry and Physics. 2010;122(1):1–9. doi: 10.1016/j.matchemphys.2010.02.063
  55. Benita Sherine H, Rajendran S. Corrosion Inhibition of Carbon Steel in Ground Water by Thiophenol-Zn2+ System. Arabian Journal for Science and Engineering. 2011;36(4):517–528. doi: 10.1007/s13369-011-0067-3
  56. Delimi A, Galopin E, Coffinier Y, Pisarek M, Boukherroub R, Talhi B, et al. Investigation of the corrosion behavior of carbon steel coated with fluoropolymer thin films. Surface and Coatings Technology. 2011;205(16):4011–4017. doi: 10.1016/j.surfcoat.2011.02.030
  57. Wang X, Yang H, Wang F. A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corrosion Science. 2010;52(4):1268–1276. doi: 10.1016/j.corsci.2009.12.018
  58. Onyeachu IB, Njoku DI, Kaya S, Ibrahimi B, Nnadozie CF. Sour corrosion of C1018 carbon steel and its inhibition by computational assessment. Journal of Adhesion Science and Technilogy. 2021;p. 1–21.
  59. de Sampaio MTG, Fernandes CM, de Souza GGP, Carvalho ES, Velasco JAC, Silva JCM, et al. Evaluation of Aqueous Extract of Mandevilla fragrans Leaves as Environmental-Friendly Corrosion Inhibitor for Mild Steel in Acid Medium. Journal of Bio- and Tribo-Corrosion. 2021;7(1):1–11. doi: 10.1007/s40735-020-00445-9
  60. Fathima H, Pais M, Rao P. The Use of Green Inhibitors in Evaluating the Safe Expiry Dates of Therapeutics. Journal of Bio- and Tribo-Corrosion. 2021;7(3):1–9. doi: 10.1007/s40735-021-00544-1
  61. Bidi MA, Azadi M, Rassouli M. A new green inhibitor for lowering the corrosion rate of carbon steel in 1 M HCl solution: Hyalomma tick extract. Materials Today Communications. 2020;24:100996. doi: 10.1016/j.mtcomm.2020.100996
  62. Prabakaran M, Kim SH, Hemapriya V, Chung IM. Evaluation of polyphenol composition and anti-corrosion properties of Cryptostegia grandiflora plant extract on mild steel in acidic medium. Journal of Industrial and Engineering Chemistry. 2016;37:47–56. doi: 10.1016/j.jiec.2016.03.006
  63. Umoren SA, Solomon MM, Ali SA, Dafalla HDM. Synthesis, characterization, and utilization of a diallylmethylamine-based cyclopolymer for corrosion mitigation in simulated acidizing environment. Materials Science and Engineering: C. 2019;100:897–914. doi: 10.1016/j.msec.2019.03.057


© 2021 Thirupathi & Venkatraman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.