• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 45, Pages: 4211-4224

Original Article

Corrosion Inhibition of Mild Steel by Newly Synthesized 1-[(4-nitrophenyl)methyl]-4-(pyridin-2- yl)piperazine in HCl Acid Medium

Received Date:07 September 2023, Accepted Date:08 October 2023, Published Date:06 December 2023

Abstract

Objectives: To use the newly synthesized efficient organic corrosion inhibitor 1-[(4-nitrophenyl)methyl]-4-(pyridin-2-yl)piperazine (NMPP) to carry out on mild steel corrosion inhibition study. Methods: The 1-[(4-nitrophenyl)methyl]-4-(pyridin-2-yl)piperazine (NMPP) organic inhibitor was synthesized by condensation polymerization. The organic inhibitor NMPP, was chara cterized by Fourier transform infrared (FTIR), and high resolution scanning electron microscope (HR-SEM). The inhibition action of the polymer composite was investigated by conventional weight loss method, and electrochemical impedance spectroscopy (EIS). Findings: The maximum corrosion inhibition efficiency of 88.34 % was obtained at concentration level of 6 % at 303K. The results revealed NMPP as a mixed type corrosion inhibitor, the thermodynamic and kinetic parameters also revealed adsorption of catalyst on to mild surface as exothermic and the adsorption was confirmed by conventional weight loss method. Novelty: FT-IR analysis reveals that predominant peaks are the interaction between inhibitor and mild steel surfaces. The morphology of mild steel coupons was investigated by HR-SEM. The HR-SEM results showed novel inhibitor to have inhibited corrosion on mild steel in 1 M HCL on CO2 environment.

Keywords: Novel inhibitor, Mild steel, HR­SEM, NMPP and Corrosion Inhibition

References

  1. Tamalmani K, Husin H. Review on Corrosion Inhibitors for Oil and Gas Corrosion Issues. Applied Sciences. 2020;10(10):1–16. Available from: https://doi.org/10.3390/app10103389
  2. Chauhan DS, Quraishi MA, Sorour AA, Verma C. A review on corrosion inhibitors for high-pressure supercritical CO2 environment: Challenges and opportunities. Journal of Petroleum Science and Engineering. 2022;215(Part B):110695. Available from: https://doi.org/10.1016/j.petrol.2022.110695
  3. Talat R, Asghar MA, Tariq I, Akhter Z, Liaqat F, Nadeem L, et al. Evaluating the Corrosion Inhibition Efficiency of Pyridinium-Based Cationic Surfactants for EN3B Mild Steel in Acidic-Chloride Media. Coatings. 2022;12(11):1–25. Available from: https://doi.org/10.3390/coatings12111701
  4. Gurjar S, Sharma SK, Sharma AK, Ratnani S. Performance of imidazolium based ionic liquids as corrosion inhibitors in acidic medium: A review. Applied Surface Science Advances. 2021;6:1–25. Available from: https://doi.org/10.1016/j.apsadv.2021.100170
  5. Chaouiki A, Chafiq M, Ko YG, Al-Moubaraki AH, Thari FZ, Salghi R, et al. Adsorption Mechanism of Eco-Friendly Corrosion Inhibitors for Exceptional Corrosion Protection of Carbon Steel: Electrochemical and First-Principles DFT Evaluations. Metals. 2022;12(10):1–19. Available from: https://doi.org/10.3390/met12101598
  6. Hanoon MM, Resen AM, Al-Amiery AA, Kadhum A, Takriff MS. Theoretical and experimental studies on the corrosion inhibition potentials of 2-((6-methyl-2-ketoquinolin-3-yl)methylene) hydrazinecarbothioamide for mild steel in 1 M HCl. . Progress in Color, Colorants and Coatings. 2022;15(1):11–23. Available from: https://pccc.icrc.ac.ir/article_81740.html
  7. Shamsa A, Barmatov E, Hughes TL, Hua Y, Neville A, Barker R. Hydrolysis of imidazoline based corrosion inhibitor and effects on inhibition performance of X65 steel in CO2 saturated brine. Journal of Petroleum Science and Engineering. 2022;208(Part B):1–12. Available from: https://doi.org/10.1016/j.petrol.2021.109235
  8. Tazouti A, Errahmany N, Rbaa M, Galai M, Rouifi Z, Touir R, et al. Effect of hydrocarbon chain length for acid corrosion inhibition of mild steel by three 8-(n-bromo-R-alkoxy)quinoline derivatives: Experimental and theoretical investigations. Journal of Molecular Structure. 2021;1244:130976. Available from: https://doi.org/10.1016/j.molstruc.2021.130976
  9. Singh A, Ansari KR, Banerjee P, Murmu M, Quraishi MA, Lin Y. Corrosion inhibition behavior of piperidinium based ionic liquids on Q235 steel in hydrochloric acid solution: Experimental, density functional theory and molecular dynamics study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021;623:126708. Available from: https://doi.org/10.1016/j.colsurfa.2021.126708
  10. Praveen BM, Prasanna BM, Mallikarjuna NM, Jagadeesh MR, Hebbar N, Rashmi D. Investigation of anticorrosive behaviour of novel tert-butyl 4-[(4-methyl phenyl) carbonyl] piperazine-1-carboxylate for carbon steel in 1M HCl. Heliyon. 2021;7(2):1–9. Available from: https://doi.org/10.1016/j.heliyon.2021.e06090
  11. Rezaeivala M, Karimi S, Sayin K, Tüzün B. Experimental and theoretical investigation of corrosion inhibition effect of two piperazine-based ligands on carbon steel in acidic media. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;641:128538. Available from: https://doi.org/10.1016/j.colsurfa.2022.128538
  12. Anbalagan S, Ravishankar M, Sivakumar S, Sivakumar M, Krishna E. Synthesis, Characterization and Corrosion Inhibition study of N-(4-((4-(pyridin-2-yl) piperazin-1-yl) methyl) phenyl) quinoline-6-carboxamide on Mild Steel under HCl Solution. Indian Journal Of Science And Technology. 2023;16(11):803–815. Available from: https://doi.org/10.17485/IJST/v16i11.2364
  13. Ranjith PK, Ignatious A, Panicker CY, Sureshkumar B, Armakovic S, Armakovic SJ, et al. Spectroscopic investigations, DFT calculations, molecular docking and MD simulations of 3-[(4-Carboxyphenyl) carbamoyl]-4-hydroxy-2-oxo-1, 2-dihydroxy quinoline-6-carboxylic acid. Journal of Molecular Structure. 2022;1264:133315. Available from: https://doi.org/10.1016/j.molstruc.2022.133315
  14. Chen Y, Chen Z, Zhuo Y. Newly Synthesized Morpholinyl Mannich Bases as Corrosion Inhibitors for N80 Steel in Acid. Materials . 2022;15(12):1–15. Available from: https://doi.org/10.3390/ma15124218
  15. Gupta SK, Mitra RK, Yadav M, Dagdag O, Berisha A, Mamba BB, et al. Electrochemical, surface morphological and computational evaluation on carbohydrazide Schiff bases as corrosion inhibitor for mild steel in acidic medium. Scientific Reports. 2023;13(1):1–21. Available from: https://doi.org/10.1038/s41598-023-41975-9
  16. Oubaaqa M, Ouakki M, Rbaa M, Benhiba F, Galai M, Idouhli R, et al. Experimental and theoretical investigation of corrosion inhibition effect of two 8-hydroxyquinoline carbonitrile derivatives on mild steel in 1 M HCl solution. Journal of Physics and Chemistry of Solids. 2022;169:110866. Available from: https://doi.org/10.1016/j.jpcs.2022.110866
  17. Aziz IAA, Annon IA, Abdulkareem MH, Hanoon MM, Alkaabi MH, Shaker LM, et al. Insights into Corrosion Inhibition Behavior of a 5-Mercapto-1, 2, 4-triazole Derivative for Mild Steel in Hydrochloric Acid Solution: Experimental and DFT Studies. Lubricants. 2021;9(12):1–14. Available from: https://doi.org/10.3390/lubricants9120122
  18. Guruprasad AM, Sachin HP, Swetha GA, Prasanna BM. Corrosion inhibition of zinc in 0.1 M hydrochloric acid medium with clotrimazole: Experimental, theoretical and quantum studies. Surfaces and Interfaces. 2020;19:100478. Available from: https://doi.org/10.1016/j.surfin.2020.100478
  19. Praveen BM, Alhadhrami ABM, Prasanna BM, Hebbar N, Prabhu R. Anti-Corrosion Behavior of Olmesartan for Soft-Cast Steel in 1 mol dm−3 HCl. Coatings. 2021;11(8):1–18. Available from: https://doi.org/10.3390/coatings11080965

Copyright

© 2023 Anbalagan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.