• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 2, Pages: 97-108

Original Article

Deep Learning Based Channel Estimation for MIMO-OFDM System with Modified ResNet Model

Received Date:09 November 2022, Accepted Date:11 December 2022, Published Date:09 January 2023


Objectives: The effectiveness of wireless communication systems is significantly influenced by channel estimation. In order to accurately estimate the Channel Impulse Response (CIR) of the channel under varied circumstances, channel estimation is a crucial procedure in the functioning of MIMO-OFDM (Multi-Input and Multi-Output – Orthogonal Frequency Division Multiplexing) systems. Methods: The proposed Deep Learning(DL) based Convolutional Neural Network (CNN) with modified ResNet architecture channel estimation method improves the Bit Error Rate(BER) and Mean Square Error(MSE) performance compared to conventional channel estimation methods. We have compared the proposed CNN method with the Least square (LS), Minimum Mean Square Error(MMSE) and Deep Neural Network(DNN) based channel estimation methods. The results have been discussed by using BER and MSE versus SNR graphs. The simulation results are being performed on the MATLAB platform of the R2021b version. Findings: The DL-based MIMO-OFDM channel estimation can achieve better performance over multipath fading channels if Channel coefficients are perfectly estimated at the receiver. The simulation test is carried out in different test conditions by considering the different number of transmitter and receiver antennas with respect to different QAM modulation order values. Novelty: The DL-based modified ResNet architecture comprises a set of layers modified to estimate the optimal channel parameters. For achieving a great reduction of MSE and BER compared to conventional channel estimation methods, the layers of the ResNet– model are modified.

Keywords: Channel estimation; MIMOOFDM system; Deep learning; Neural network; ResNet


  1. Elnakeeb A, Mitra U. Bilinear Channel Estimation for MIMO OFDM: Lower Bounds and Training Sequence Optimization. IEEE Transactions on Signal Processing. 2021;69:1317–1331. Available from: https://doi.org/10.1109/TSP.2021.3056591
  2. Gao X, Jin S, Wen CK, Li GY. ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers. IEEE Communications Letters. 2018;22(12):2627–2630. Available from: https://doi.org/10.1109/LCOMM.2018.2877965
  3. Yang X, Matthaiou M, Yang J, Wen CK, Gao F, Jin S. Hardware-Constrained Millimeter-Wave Systems for 5G: Challenges, Opportunities, and Solutions. IEEE Communications Magazine. 2019;57(1):44–50. Available from: https://doi.org/10.1109/MCOM.2018.1701050
  4. Shea T, Hoydis J. An introduction to deep learning for the physical layer. IEEE Transactions on Cognitive Communications and Networking . 2017;3(4):563–575. Available from: https://doi.org/10.1109/TCCN.2017.2758370
  5. He H, Jin S, Wen CK, Gao F, Li GY, Xu Z. Model-Driven Deep Learning for Physical Layer Communications. IEEE Wireless Communications. 2019;26(5):77–83. Available from: https://doi.org/10.1109/MWC.2019.1800447
  6. Qin Z, Ye H, Li GY, Juang BHFF. Deep Learning in Physical Layer Communications. IEEE Wireless Communications. 2019;26(2):93–99. Available from: https://doi.org/10.1109/MWC.2019.1800601
  7. He H, Wen CK, Jin S, Li GY. Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems. IEEE Wireless Communications Letters. 2018;7(5):852–855. Available from: https://doi.org/10.1109/LWC.2018.2832128
  8. Ye H, Li GY, Juang BHF. Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems. IEEE Wireless Communications Letters. 2018;7(1):114–117. Available from: https://doi.org/10.1109/LWC.2017.2757490
  9. Wen CK, Shih WT, Jin S. Deep Learning for Massive MIMO CSI Feedback. IEEE Wireless Communications Letters. 2018;7(5):748–751. Available from: https://doi.org/10.1109/LWC.2018.2818160
  10. Wang T, Wen CK, Jin S, Li GY. Deep Learning-Based CSI Feedback Approach for Time-Varying Massive MIMO Channels. IEEE Wireless Communications Letters. 2019;8(2):416–419. Available from: https://doi.org/10.1109/LWC.2018.2874264
  11. Huang H, Yang J, Huang H, Song Y, Gui G. Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System. IEEE Transactions on Vehicular Technology. 2018;67(9):8549–8560. Available from: https://doi.org/10.1109/TVT.2018.2851783
  12. Yang Y, Gao F, Ma X, Zhang S. Deep Learning-Based Channel Estimation for Doubly Selective Fading Channels. IEEE Access. 2019;7:36579–36589. Available from: https://doi.org/10.1109/ACCESS.2019.2901066
  13. Soltani M, Pourahmadi V, Mirzaei A, Sheikhzadeh H. Deep Learning-Based Channel Estimation. IEEE Communications Letters. 2019;23(4):652–655. Available from: https://doi.org/10.1109/LCOMM.2019.2898944
  14. Han S, Oh Y, Song C. A Deep Learning Based Channel Estimation Scheme for IEEE 802.11p Systems. IEEE International Conference on Communications (ICC). 2019;p. 1–6. Available from: https://doi.org/10.1109/ICC.2019.8761354
  15. Jiang R, Wang X, Cao S, Zhao J, Li X. Deep Neural Networks for Channel Estimation in Underwater Acoustic OFDM Systems. IEEE Access. 2019;7:23579–23594. Available from: https://doi.org/10.1109/ACCESS.2019.2899990
  16. Kang JM, Chun CJ, Kim IM. Deep-Learning-Based Channel Estimation for Wireless Energy Transfer. IEEE Communications Letters. 2018;22(11):2310–2313. Available from: https://doi.org/10.1109/LCOMM.2018.2871442
  17. Mehrabi M, Mohammadkarimi M, Ardakani M, Jing Y. Decision Directed Channel Estimation Based on Deep Neural Network $k$ -Step Predictor for MIMO Communications in 5G. IEEE Journal on Selected Areas in Communications. 2019;37(11):2443–2456. Available from: https://doi.org/10.1109/JSAC.2019.2934004
  18. Chun CJ, Kang JM, Kim IM. Deep Learning-Based Joint Pilot Design and Channel Estimation for Multiuser MIMO Channels. IEEE Communications Letters. 2019;23(11):1999–2003. Available from: https://doi.org/10.1109/OJVT.2020.3045470
  19. Chun C, Kang J, Kim I. Deep learning-based channel estimation for massive MIMO systems. IEEE Wireless Commununication Letters. 2019;8(4):1228–1231. Available from: https://doi.org/10.1109/LCOMM.2019.2937488
  20. Dong P, Zhang H, Li GY, Gaspar IS, Naderializadeh N. Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems. IEEE Journal of Selected Topics in Signal Processing. 2019;13(5):989–1000. Available from: https://doi.org/10.1109/JSTSP.2019.2925975


© 2023 Silpa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.