• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 15, Pages: 668-676

Original Article

Design and Finite Difference Time Domain Analysis of a Dual Band Slotted Microstrip Patch Antenna for Wireless IoT Applications

Received Date:08 October 2021, Accepted Date:17 February 2022, Published Date:15 April 2022


Objectives: To investigate the effect of comb-like slot dimensions on the dualband microstrip antenna performance parameters. Methods: Alternate comblike slots are placed on the microstrip patch and the slot dimensions are varied to observe the effect on the antenna performance parameters. The design is simulated in the Mentor Graphics software package. The Mentor Graphics software results are verified with Finite Difference Time Domain (FDTD) analysis in MATLAB. The measured results on the Vector Network Analyzer (VNA) are in good agreement with the simulated results. Findings: A dual-band operation resonating at 2.25 GHz and 3.5 GHz is observed. The return loss of -30.23 dB and -33.3 dB at 2.25 GHz and 3.5 GHz is noticed. The gain and directivity at 2.25 GHz are 4.11 dBi and 6.2 dBi; whereas, at 3.5 GHz it is 4 dBi and 6.8 dBi respectively. It is observed that the slot width significantly influences the impedance matching. The alternate arrangement of comb-like slots on the patch increases the electrical length and improves the Return Loss (S11). Novelty: Enhancement of S11 characteristics without significant shift in the resonating frequency by felicitous placements of comb-like slots is the novelty of the proposed work.

Keywords: Slotted Antenna; Dual Band; FDTD; UPML; Return Loss (S11)


  1. Gupta AK, Chowdary PSR, Krishna MV. Trends in IoT Antenna Design-A Brief Review. Test Engineering and Management. 2020;p. 193–4120.
  2. Kumar A, Raghavan S. Broadband SIW cavity-backed triangular-ring-slotted antenna for K-band applications. AEU - International Journal of Electronics and Communications. 2018;87:60–64. Available from: https://dx.doi.org/10.1016/j.aeue.2018.02.016
  3. Chaurasia P, Kanaujia BK, Dwari S, Khandelwal MK. Design and analysis of seven-bands-slot-antenna with small frequency ratio for different wireless applications. AEU - International Journal of Electronics and Communications. 2019;99:100–109. Available from: https://dx.doi.org/10.1016/j.aeue.2018.11.036
  4. Jaiverdhan, Kumar A, Sharma MM, Yadav RP. Dual wideband circular polarized CPW-fed strip and slots loaded compact square slot antenna for wireless and satellite applications. AEU - International Journal of Electronics and Communications. 2019;108:181–188. Available from: https://dx.doi.org/10.1016/j.aeue.2019.06.027
  5. Varkiani SMH, Afsahi M. Compact and ultra-wideband CPW-fed square slot antenna for wearable applications. AEU - International Journal of Electronics and Communications. 2019;106:108–115. Available from: https://dx.doi.org/10.1016/j.aeue.2019.04.024
  6. Kaur N, Sivia JS, Rajni. Artificial neural network based metasurface inspired planar frequency reconfigurable antenna for wireless applications. International Journal of RF and Microwave Computer-Aided Engineering. 2021;31(9). doi: 10.1002/mmce.22793
  7. Deshmukh AA, Bagariaparekh T, Mahale S. Mahale Multi-Band Slot Cut E-Shaped Sectoral microstrip Antennas. Procedia Computer Science. 2015;49:319–326. doi: 10.1016/j.procs.2015.04.259
  8. Kapetanakis TN, Pavec M, Ioannidou MP, Nikolopoulos CD, Baklezos AT, Soukup R, et al. Embroidered Bow-Tie Wearable Antenna for the 868 and 915 MHz ISM Bands. Electronics. 1983;10. Available from: https://doi.org/10.3390/electronics10161983Jianxing
  9. Patil S, Pandey AK, Pandey VK. A Compact, Wideband, Dual Polarized CPW-Fed Asymmetric Slot Antenna for Wireless Systems. Journal of Microwaves, Optoelectronics and Electromagnetic Applications. 2020;19(3):343–355. Available from: https://dx.doi.org/10.1590/2179-10742020v19i3827
  10. Bhaskar S, Singh AK. Meandered cross-shaped slot circularly polarised antenna for handheld UHF RFID reader. AEU - International Journal of Electronics and Communications. 2019;100:106–113. Available from: https://dx.doi.org/10.1016/j.aeue.2018.12.024
  11. Aliakbari H, Nie LY, Lau BK. Large Screen Enabled Tri-Port MIMO Handset Antenna for Low LTE Bands. IEEE Open Journal of Antennas and Propagation. 2021;2:911–920. Available from: https://dx.doi.org/10.1109/ojap.2021.3107436
  12. Zhang JF, Cheng YJ, Ding YR, Bai CX. A Dual-Band Shared-Aperture Antenna With Large Frequency Ratio, High Aperture Reuse Efficiency, and High Channel Isolation. IEEE Transactions on Antennas and Propagation. 2019;67(2):853–860. Available from: https://dx.doi.org/10.1109/tap.2018.2882697
  13. Nakmouche MF, Allam AMMA, Fawzy DE, Lin DB, Sree MFA. Development of H-Slotted DGS Based Dual Band Antenna Using ANN for 5G Applications. 2021 15th European Conference on Antennas and Propagation (EuCAP). 2021. doi: 10.23919/EuCAP51087.2021.9411213
  14. Kandasamy K, Majumder B, Mukherjee J, Ray KP. Dual-Band Circularly Polarized Split Ring Resonators Loaded Square Slot Antenna. IEEE Transactions on Antennas and Propagation. 2016;64(8):3640–3645. Available from: https://dx.doi.org/10.1109/tap.2016.2565729
  15. Sofi AA, Amit S, Sujatha BK. 3D-FDTD analysis of fractal antenna using PML boundary conditions. Global Transitions Proceedings. 2021;2(2):323–329. Available from: https://dx.doi.org/10.1016/j.gltp.2021.08.029
  16. Tong MS, Sauleau R, Krozer V, Lu Y. Numerical studies of stripline-typed photonic band-gap (PBG) structures using finite difference time domain (FDTD) method. Journal of Computational Electronics. 2006;5(1):53–61. Available from: https://dx.doi.org/10.1007/s10825-006-7984-5
  17. Asif R, Aziz A, Amjad M, Akhtar M, Baqir A, Abbasi MN. Analysis and Design of an Efficient and Novel MIMO Antenna for 5G Smart Phones Using FDTD and FEM. Applied Computational Electromagnetics Society. 2021;36(3):266–272. Available from: https://dx.doi.org/10.47037/2020.aces.j.360306
  18. Bhattacharya A, Roy B, Chowdhury SK, Bhattacharjee AK. Computational and experimental analysis of a low-profile, isolation-enhanced, band-notch UWB-MIMO antenna. Journal of Computational Electronics. 2019;18(2):680–688. Available from: https://dx.doi.org/10.1007/s10825-019-01309-3


© 2022 Kalkhambkar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.