• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 39, Pages: 4116-4126

Original Article

Determinants of information and communication technology (ICT) adoption in developing countries

Received Date:01 June 2020, Accepted Date:09 August 2020, Published Date:07 November 2020


Background/Objective: The adoption of Information and communication technology (ICT) in developing countries is increasing during last two decades. This study explores the determinants of ICT adoption in 67 selected developing countries. Methods/Statistical analysis: Panel data was collected from World Bank and International telecommunication websites for the period of 2000 to 2018. This study explores the impact of access to electricity, ICT good imports, financial development index, GDP per capita, urban population, control of corruption and government effectiveness on ICT adoption. Selected developing countries are divided into four panels such as low income, lower middle, upper middle and high income countries. Pesaran CSD, Friedman CSD and Frees CSD tests are used to check the presence of cross-sectional dependency in the panel data. The results confirmed the presence of crosssectional dependency in the variables and hence CIPS second generation unit root test is used for stationarity. Kao test is used to check the long run cointegration among the variables. FMOLS is used for regression analysis. Findings: The regression results show the mixed findings in different panels. The results indicate that access to electricity is an important determinant of ICT adoption in low and lower middle income developing countries. ICT imports and Government effectiveness are among the significant determinants of ICT adoption in low, upper middle and high income developing countries. GDP per capita is an important variable for each panel. Urban population is found to enhance ICT adoption in lower middle and high income developing countries. It is recommended that Government should focus on these important determinants to increase the ICT adoption in selected developing countries. Novelty/Application: ICT development index is used as a dependent variable instead of components of ICT such as internet, mobile phone and computer penetration. New econometrics techniques and variables are used in analysis.

Keywords: ICT adoption; developing countries; influencing factors; hardware; software; panel data


  1. Kayisire D, Wei J. ICT Adoption and Usage in Africa: Towards an Efficiency Assessment. Information Technology for Development. 2016;22:630–653. Available from: https://dx.doi.org/10.1080/02681102.2015.1081862
  2. Jalava J, Pohjola M. Economic growth in the New Economy: evidence from advanced economies. Information Economics and Policy. 2002;14:189–210. Available from: https://dx.doi.org/10.1016/s0167-6245(01)00066-x
  3. Baliamoune-Lutz M. An analysis of the determinants and effects of ICT diffusion in developing countries. Information Technology for Development. 2003;10(3):151–169. Available from: https://dx.doi.org/10.1002/itdj.1590100303
  4. Lema R, Rabellotti R, Sampath PG. Innovation Trajectories in Developing Countries: Co-evolution of Global Value Chains and Innovation Systems. The European Journal of Development Research. 2018;30(3):345–363. Available from: https://dx.doi.org/10.1057/s41287-018-0149-0
  5. Muriithi P, Horner D, Pemberton L. Factors contributing to adoption and use of information and communication technologies within research collaborations in Kenya. Information Technology for Development. 2016;22:84–100. Available from: https://dx.doi.org/10.1080/02681102.2015.1121856
  6. Weber DM, Kauffman RJ. What drives global ICT adoption? Analysis and research directions. Electronic Commerce Research and Applications. 2011;10:683–701. Available from: https://dx.doi.org/10.1016/j.elerap.2011.01.001
  7. Shade K, Awodele O, O, Samuel O, O. ICT: an effective tool in human development. International Journal of Humanities and Social Science. 2012;2(7):157–62.
  8. Higón DA, Gholami R, Shirazi F. ICT and environmental sustainability: A global perspective. Telematics and Informatics. 2017;34(4):85–95. Available from: https://dx.doi.org/10.1016/j.tele.2017.01.001
  9. Kraemer KL, Ganley D, Dewan S. Across the digital divide: A cross-country multi-technology analysis of the determinants of IT penetration. Journal of the Association for Information Systems. 2005;6(12):10.
  10. Chinn MD, Fairlie RW. ICT Use in the Developing World: An Analysis of Differences in Computer and Internet Penetration. Review of International Economics. 2010;18(1):153–167. Available from: https://dx.doi.org/10.1111/j.1467-9396.2009.00861.x
  11. Asongu SA. ICT, openness and CO2 emissions in Africa. Environmental Science and Pollution Research. 2018;25:9351–9359. Available from: https://dx.doi.org/10.1007/s11356-018-1239-4
  12. Kauffman RJ, Techatassanasoontorn AA. Understanding early diffusion of digital wireless phones. Telecommunications Policy. 2009;33(8):432–450. Available from: https://dx.doi.org/10.1016/j.telpol.2009.03.006
  13. Wallsten S. Regulation and Internet Use in Developing Countries. Economic Development and Cultural Change. 2005;53:501–523. Available from: https://dx.doi.org/10.1086/425376
  14. Cuervo MRV, Menéndez AJL. A multivariate framework for the analysis of the digital divide: Evidence for the European Union-15. Information & Management. 2006;43(6):756–766. Available from: https://dx.doi.org/10.1016/j.im.2006.05.001
  15. Lechman E. Ict diffusion in developing countries. Springer. 2016.
  16. Comin D, Hobijn B. Cross-country technology adoption: making the theories face the facts. Journal of Monetary Economics. 2004;51(1):39–83. Available from: https://dx.doi.org/10.1016/j.jmoneco.2003.07.003
  17. Dasgupta S, Lall S, Wheeler D. Policy Reform, Economic Growth and the Digital Divide. Oxford Development Studies. 2005;33(2):229–243. Available from: https://dx.doi.org/10.1080/13600810500137889
  18. Quibria MG, Ahmed SN, Tschang T, Reyes-Macasaquit ML. Digital divide: determinants and policies with special reference to Asia. Journal of Asian Economics. 2003;13(6):811–825. Available from: https://dx.doi.org/10.1016/s1049-0078(02)00186-0
  19. Sein MK, Furuholt B. Intermediaries: bridges across the digital divide. Information Technology for Development. 2012;18:332–344. Available from: https://dx.doi.org/10.1080/02681102.2012.667754
  20. Groshek J. The Democratic Effects of the Internet, 1994—2003. International Communication Gazette. 2009;71:115–136. Available from: https://dx.doi.org/10.1177/1748048508100909
  21. Mckenney JL, Mcfarlan FW. The information archipelago-maps and bridges. Harvard Business Review. 1982;60(5):109–128.
  22. Cooper RB, Zmud RW. Information Technology Implementation Research: A Technological Diffusion Approach. Management Science. 1990;36:123–139. Available from: https://dx.doi.org/10.1287/mnsc.36.2.123
  23. Umanath NS, Campbell TL. Differential Diffusion of Information Systems Technology in Multinational Enterprises. Information Resources Management Journal. 1994;7(1):6–19. Available from: https://dx.doi.org/10.4018/irmj.1994010101
  24. Shore B. Culture in mind: Cognition, culture, and the problem of meaning. Oxford University Press. 1998.
  25. Hoyos RED, Sarafidis V. Testing for Cross-Sectional Dependence in Panel-Data Models. The Stata Journal: Promoting communications on statistics and Stata. 2006;6(4):482–496. Available from: https://dx.doi.org/10.1177/1536867x0600600403
  26. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the american statistical association. 0200;32(200):675–701. Available from: https://doi.org/10.1080/01621459.1937.10503522
  27. Frees EW. Assessing cross-sectional correlation in panel data. Journal of Econometrics. 1995;69(2):393–414. Available from: https://dx.doi.org/10.1016/0304-4076(94)01658-m
  28. Levin A, Lin CF, Chu CSJ. Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics. 2002;108(1):1–24. Available from: https://dx.doi.org/10.1016/s0304-4076(01)00098-7
  29. Baltagi BH, Pesaran MH. Heterogeneity and cross section dependence in panel data models: theory and applications introduction. Journal of Applied Econometrics. 2007;22(2):229–232. Available from: https://dx.doi.org/10.1002/jae.955
  30. Breitung J, Das S. Panel unit root tests under cross-sectional dependence. Statistica Neerlandica. 2005;59(4):414–433. Available from: https://dx.doi.org/10.1111/j.1467-9574.2005.00299.x
  31. A-A B, Siam AJ. Immigration and economic growth in Jordan: FMOLS approach. International Journal of Humanities Social Sciences and Education (IJHSSE). 2014;1(9):85–92.


© 2020 Farooqi et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.