• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 27, Pages: 2250-2256

Original Article

Determination of sky status by ground based radiometric data analysis

Received Date:17 March 2021, Accepted Date:19 July 2021, Published Date:04 August 2021

Abstract

Objectives: To predict meteorological phenomena such as rain events from sky status during rainy and non-rainy periods. Methods: The method used here is based on brightness temperature ratio measurement at two different frequencies, namely 23.8 GHz and 30 GHz respectively, using ground based dual frequency radiometric data. The ratios of brightness temperature readings obtained by the dual-frequency radiometer at the two above mentioned frequencies are calculated for each simultaneously-taken pair of measurements. Data obtained by the authors for the year 2009 at Cachoeira Paulista in Brazil has been used for analysis. Findings: The major results obtained from the analysis of data collected over a continuous period of seven months are used to construct corresponding histograms and cumulative count graphs of brightness temperature ratios. The histograms and graphs clearly show three peak values that could be interpreted as thresholds between clear sky, cloudy sky and rainy sky conditions respectively. Novelty: The study implements detection of rain events from sky status during rainy and non-rainy periods using peak brightness temperature values obtained from graphs generated using the observation data. The outlined technique can therefore be used to clearly determine sky conditions and accurately predict rain phenomena. The ratio of brightness temperatures at the two frequencies is a unique parameter which is critical to the successful estimation of rain from sky status. The results agree well with multi-channel radiometric data obtained by other researchers at lower frequencies.

Keywords: sky status; microwave; millimeter wave; dual frequency radiometer; brightness temperature; rainfall

References

  1. Czekala H, Crewell MS, Simmer C, Thiele A, Hornbostel A, Schroth A. Interpretation of polarization features in ground-based microwave observations as caused by horizontally aligned oblate spheroids. Journal of Applied Meteorology. 2001;40:1918–1932.
  2. Liua GR, Liub CC, Kuoc TH. Rainfall intensity estimation by ground-based dual-frequency microwave radiometers. Journal of Applied Meteorology and Climatology. 1035;40(6):1035–1041. Available from: https://doi.org/10.1175/1520-0450(2001)040<1035:RIEBGB>2.0.CO;2
  3. Karmakar PK, Maiti M, Sett S, Angelis CF, Machado LAT. Radiometric estimation of water vapor content over Brazil. Advances in Space Research. 2011;48(9):1506–1514. Available from: https://dx.doi.org/10.1016/j.asr.2011.06.032
  4. Janssen M. Atmospheric remote sensing by microwave radiometry. New York, 572. John Wiley. 1993.
  5. Marzano FS, Cimini D, Ciotti P, Ware R. Modeling and measurement of rainfall by ground-based multispectral microwave radiometry. IEEE Transactions on Geoscience and Remote Sensing. 2005;43(5):1000–1011. Available from: https://dx.doi.org/10.1109/tgrs.2004.839595
  6. Ulaby FT, Moore RK, Fung AK. Microwave Remote Sensing-Active and Passive. (Vol. 1) Norwood. Artech House. 1986.
  7. Bosisio AV, Fionda E, Basili P, Carlesimo G, Martellucci A. Identification of rainy periods from ground based microwave radiometry. European Journal of Remote Sensing. 2012;45(1):41–50. Available from: https://dx.doi.org/10.5721/eujrs20124505
  8. Shih S, Chu Y. Studies of 19.5 GHz sky radiometric temperature: Measurements and applications. Radio Science. 2002;37:1–16. Available from: 10.1029/2000RS002596
  9. Hye YW, Yeon-Hee K, Hee-Sang L. An application of brightness temperature received from a ground-based microwave radiometer to estimation of precipitation occurrences and rainfall intensity. Asia-Pacific Journal of Atmospheric Sciences. 2009;45(1):55–69.
  10. Mallet C, Lavergnat J. Beacon calibration with a multifrequency radiometer. Radio Science. 1992;27(5):661–680. Available from: https://dx.doi.org/10.1029/92rs00817
  11. Bhattacharyya K, Maiti M, Biswas SK, Islam MA, Pradhan AK, Ghosh PK, et al. Short Term Rain Forecasting from Radiometric Brightness Temperature Data. Journal of Mechanics of Continua and Mathematical Sciences. 2020;15(2):70–83. Available from: https://doi.org/10.26782/jmcms.2020.02.00007
  12. Alonso-Montesinos J. Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera. Remote Sensing. 2020;12:1382. Available from: https://dx.doi.org/10.3390/rs12091382
  13. Liandrat O, Cros S, Braun A, Saint-Antonin L, Decroix J, Schmutz N. Cloud cover forecast from a ground-based all sky infrared thermal camera. 2017. doi: 10.1117/12.2278636
  14. Ely TA, Seubert J, Bradley N, Drain T, Bhaskaran S. Radiometric Autonomous Navigation Fused with Optical for Deep Space Exploration. The Journal of the Astronautical Sciences. 2021;68(1):300–325. Available from: https://dx.doi.org/10.1007/s40295-020-00244-x
  15. Jezek KC, Johnson JT, Tan S, Tsang L, Andrews MJ, Brogioni M, et al. 500-2000-MHz Brightness Temperature Spectra of the Northwestern Greenland Ice Sheet. IEEE Transactions on Geoscience and Remote Sensing. 2018;56(3):1485–1496. Available from: 10.1109/TGRS.2017.2764381
  16. Karmakar PK, Maiti M, Calheiros AJP, Angelis CF, Machado LAT, Costa SSD. Ground-based single-frequency microwave radiometric measurement of water vapour. International Journal of Remote Sensing. 2011;32(23):8629–8639. Available from: https://dx.doi.org/10.1080/01431161.2010.543185

Copyright

© 2021 Maiti et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.