• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 13, Pages: 1292-1303

Original Article

Downlink Learning-aided Precoding for Cell-Free networks Specially D esigned for beyond 5G Communication System

Received Date:21 November 2023, Accepted Date:18 January 2024, Published Date:22 March 2024


Objectives: With increase in number of access points in Cell-Free Massive Multiple Input Multiple Output (CFMM) system, spatial complexity of calculating precoding vector increases with traditional precoding schemes. So, to reduce computational complexity, network cost, and run time, a new deep learning -aided precoder is specially designed for CFMM system. The performance of downlink (DL) Cell-Free Massive Multiple Input Multiple Output (CFMM) system operating under Rayleigh fading channel model is analyze using new deep learning-based precoding scheme. Methods: We introduce new deep learning-aided precoder and an improved version of basic scalable pilot assignment algorithm which enhances system performance. We derive closed- form expression for average DL spectral efficiency (SE) for the proposed scheme, which is then compared with Minimum Mean Square Error Successive Interference Cancellation (MMSESIC), Regularized Zero Forcing (RZF), Least Square (LS) and Maximum Ratio (MR) combining techniques. We analyze the proposed scheme with perfect channel state information (CSI), instantaneous CSI, coherent transmission, non-coherent transmission, different pilot configuration. Findings: The spectral efficiency obtained with CFMM-MMSESIC and the proposed scheme is 3 bits/s/Hz, and 2.5bits/s/Hz respectively, which clearly indicates the difference of 20 % only. So, the proposed scheme gives near optimal results, and we can use simple linear combining techniques instead of complex non-linear combining techniques. Also, the proposed scheme with coherent data transmission gives performance curve, which is very close to MMSESIC scheme as desired. The performance of the proposed system is improved by reducing run time and computational complexity as compared to conventional linear precoding schemes. Novelty: The proposed precoder improves performance by reducing run time and computational complexity. Advanced pilot assignment algorithm enhances performance by reducing pilot contamination.

Keywords: Cell-Free Massive Multiple Input Multiple Output, Pilot Contamination, Precoding, Minimum Mean Square Error Successive Interference Cancellation, Maximum Ratio, Regularized Zero Forcing (RZF), Least Square (LS)


  1. Khanna H, Aggarwal M, Ahuja S. Statistical characteristics and performance evaluation of FSO links with misalignment fading influenced by correlated sways. AEU - International Journal of Electronics and Communications. 2018;85:118–125. Available from: https://doi.org/10.1016/j.aeue.2017.12.032
  2. Sharma R, Aggarwal M, Ahuja S. Performance Analysis of Indoor FSO Communication Systems under Receiver Mobility. 2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE). 2016;p. 652–657. Available from: https://doi.org/10.1109/ICMETE.2016.61
  3. Aggarwal M, Garg P, Puri P, Sharma PK. Performance analysis of optical wireless communication system with a decode and forward relay. 2014 International Conference on Signal Processing and Integrated Networks (SPIN). 2014;p. 333–337. Available from: https://doi.org/10.1109/SPIN.2014.6776973
  4. Xu S, Cao Y, Li C, Wang D, Yang L. Spanning Tree Method for Over-the-Air Channel Calibration in 6G Cell-Free Massive MIMO. IEEE Transactions on Wireless Communications. 2023;22(8):5567–5582. Available from: https://doi.org/10.1109/TWC.2023.3235355
  5. Wang CXX, You X, Gao X, Zhu X, Li Z, Zhang C, et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Communications Surveys & Tutorials. 2023;25(2):905–974. Available from: https://doi.org/10.1109/COMST.2023.3249835
  6. Murthy KC. Performance evaluation of chaotic spreading codes in massive MIMO OFDM system. Indian Journal of Science and Technology. 2020;13(42):4374–4385. Available from: https://doi.org/10.17485/IJST/v13i42.2027
  7. Matta JCP, Siddiah P. A Modified OMP Algorithm with Reduced Feedback Overhead for Massive MIMO System. Indian Journal of Science and Technology. 2021;14(33):2663–2670. Available from: https://doi.org/10.17485/IJST/v14i33.1442
  8. Abose TA, Olwal TO, Hassen MR. Hybrid Beamforming for Millimeter Wave Massive MIMO under Multicell Multiuser Environment. Indian Journal of Science and Technology. 2022;15(20):1001–1011. Available from: https://doi.org/10.17485/IJST/v15i20.114
  9. Obakhena HI, Imoize AL, Anyasi FI, Kavitha KVN. Application of cell-free massive MIMO in 5G and beyond 5G wireless networks: a survey. Journal of Engineering and Applied Science. 2021;68(1):1–41.
  10. Apiyo A, Izydorczyk J. A Survey of NOMA-Aided Cell-Free Massive MIMO Systems. Electronics. 2024;13(1):231. Available from: https://doi.org/10.3390/electronics13010231
  11. Liu H, Zhang J, Jin S, Ai B. Graph Coloring Based Pilot Assignment for Cell-Free Massive MIMO Systems. IEEE Transactions on Vehicular Technology. 2020;69(8):9180–9184. Available from: https://doi.org/10.1109/TVT.2020.3000496
  12. Victor CM, Mvuma AN, Mrutu SI. Multi‐input fully CNN for joint pilot decontamination and symbol detection in 5G massive MIMO. IET Communications. 2023;17(16):1899–1906. Available from: https://doi.org/10.1049/cmu2.12670
  13. Polegre AA, Sanguinetti L, Armada AG. Pilot Decontamination Processing in Cell-Free Massive MIMO. IEEE Communications Letters. 2021;25(12):3990–3994. Available from: https://doi.org/10.1109/LCOMM.2021.3118890
  14. Ayidh A, Sambo A, Imran Y, MA. Mitigation pilot contamination based on matching technique for uplink cell-free massive MIMO systems. Scientific Reports. 2022;12(1):16893. Available from: https://doi.org/10.1038/s41598-022-21241-0
  15. Zheng J, Zhang J, Bjornson E, Ai B. Cell-Free Massive MIMO with Channel Aging and Pilot Contamination. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. 2020;p. 1–6. Available from: https://doi.org/10.1109/GLOBECOM42002.2020.9322468
  16. Misso A, Kissaka M, Maiseli B. Exploring pilot assignment methods for pilot contamination mitigation in massive MIMO systems. Cogent Engineering. 2020;7(1):1831126. Available from: https://doi.org/10.1080/23311916.2020.1831126
  17. Interdonato G, Karlsson M, Bjornson E, Larsson EG. Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO. IEEE Transactions on Wireless Communications. 2020;19(7):4758–4774. Available from: https://doi.org/10.1109/TWC.2020.2987027
  18. ¨ornson EB, Sanguinetti L. Scalable cell-free massive MIMO systems. IEEE Trans. Commun. 68. Available from: https://doi.org/10.1109/TCOMM.2020.2987311
  19. Ha AL, Chien TV, Nguyen TH, Choi W, Nguyen VD. Deep Learning-Aided 5G Channel Estimation. 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). 2021. Available from: https://ieeexplore.ieee.org/document/9377351


© 2024 Deshpande et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.