• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 37, Pages: 1850-1858

Original Article

EBTASIC: An Entropy-Based TOPSIS Algorithm for Task Scheduling in IaaS Clouds

Received Date:12 April 2022, Accepted Date:17 August 2022, Published Date:26 September 2022


Objectives: To propose an algorithm to balance resource utilization and revenue generation in the cloud environment. Methods: This study proposes the Entropy-Based TOPSIS algorithm for task scheduling in IaaS Clouds (EBTASIC) to balance resource utilization and revenue generation using the objective-based Entropy Weighting Method (EWM) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Findings/Novelty: Various performance evaluation factors are calculated using EBTASIC and compared with baseline algorithms First Come First Serve (FCFS) and Earliest Deadline First (EDF) algorithms over 12750 lease requests with hard deadlines. The actual response time of EBTASIC is 37.61 percent faster than FCFS and 47.95 percent faster than EDF. Total time spent on lease execution by EBTASIC is reduced by 3.43 percent when compared to FCFS and 3.99 percent when compared to EDF. Turnaround time of EBTASIC is lowered by 21.14 percent when compared to FCFS and 28.81 percent when compared to EDF. EBTASIC throughput is enhanced by 40.80 percent over FCFS and 54.3 percent over EDF. The average response time of EBTASIC is shortened by 9.38 percent compared to FCFS and 14.81 percent compared to EDF. Resource utilization of the proposed algorithm EBTASIC is enhanced by 25.54 percent over FCFS and 6.79 percent over the EDF algorithm.

Keywords: Task and VM Scheduling; MCDM Techniques; TOPSIS; Entropy Weighting Method; EBTASIC Algorithm


  1. Cinelli M, Kadziński M, Miebs G, Gonzalez M, Słowiński R. Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. European Journal of Operational Research. 2022;302(2):633–651. Available from: https://doi.org/10.1016/j.ejor.2022.01.011
  2. Alashaikh A, Alanazi E, Al-Fuqaha A. A Survey on the Use of Preferences for Virtual Machine Placement in Cloud Data Centers. ACM Computing Surveys. 2022;54(5):1–39. Available from: https://doi.org/10.1145/3450517
  3. Nayak SC, Parida S, Tripathy C, Pati B, Panigrahi CR. Multicriteria decision-making techniques for avoiding similar task scheduling conflict in cloud computing. International Journal of Communication Systems. 2020;33(13):e4126. Available from: https://doi.org/10.1002%2Fdac.4126
  4. Shukla DK, Kumar D, Kushwaha DS. Task scheduling to reduce energy consumption and makespan of cloud computing using NSGA-II. Materials Today: Proceedings. 2021. Available from: https://doi.org/10.1016/j.matpr.2020.11.556
  5. Panwar N, Negi S, Rauthan MMS, Vaisla KS. TOPSIS–PSO inspired non-preemptive tasks scheduling algorithm in cloud environment. Cluster Computing. 2019;22(4):1379–1396. Available from: https://doi.org/10.1007/s10586-019-02915-3
  6. Chakravarthi KK, Shyamala L, Vaidehi V. TOPSIS inspired cost-efficient concurrent workflow scheduling algorithm in cloud. Journal of King Saud University - Computer and Information Sciences. 2022;34(6):2359–2369. Available from: https://doi.org/10.1016/j.jksuci.2020.02.006
  7. Khorsand R, Ramezanpour M. An energy-efficient task-scheduling algorithm based on a multi-criteria decision-making method in cloud computing. International Journal of Communication Systems. 2020;33(9):e4379. Available from: https://doi.org/10.1002/dac.4379
  8. Nayak SC, Tripathy C. An Improved Task Scheduling Mechanism Using Multi-Criteria Decision Making in Cloud Computing. International Journal of Information Technology and Web Engineering. 2019;14(2):92–117. Available from: https://doi.org/10.4018/IJITWE.2019040106
  9. Alla HB, Alla SB, Ezzati A, Touhafi A. A novel multiclass priority algorithm for task scheduling in cloud computing. The Journal of Supercomputing. 2021;77(10):11514–11555. Available from: https://doi.org/10.1007/s11227-021-03741-4
  10. Panda SK, Nanda SS, Bhoi SK. A pair-based task scheduling algorithm for cloud computing environment. Journal of King Saud University - Computer and Information Sciences. 2022;34(1):1434–1445. Available from: https://doi.org/10.1016/j.jksuci.2018.10.001
  11. Shrivastava V. Virtual Machine Simulator System. ViMSiS 2020. Available from: https://vimsis.web.app/ (accessed )
  12. Kannan D, Thiyagarajan R. Entropy based <scp>TOPSIS</scp> method for controller selection in software defined networking. Concurrency and Computation: Practice and Experience. 2022;34(1):6499. Available from: https://doi.org/10.1002/cpe.6499
  13. Afzalibehbahani N, Khodadadi-Karimvand M, Ahmadi A. Environmental Risk Assessment Using FMEA and Entropy Based on TOPSIS Method: a Case Study Oil Wells Drilling. Big Data and Computing Visions. 2022. Available from: https://doi.org/10.22105/bdcv.2022.331778.1054
  14. Rajan CDS. RETRACTED ARTICLE: Design and implementation of fuzzy priority deadline job scheduling algorithm in heterogeneous grid computing. Journal of Ambient Intelligence and Humanized Computing. 2021;12(6):6073–6080. Available from: https://doi.org/10.1007/s12652-020-02171-z
  15. Chraibi A, Alla SB, Ezzati A. An efficient cloudlet scheduling via bin packing in cloud computing. International Journal of Electrical and Computer Engineering (IJECE). 2022;12(3):3226. Available from: https://doi.org/10.11591/ijece.v12i3.pp3226-3237


© 2022 Shrivastava & Shaikh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.