• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 28, Pages: 2883-2891

Review Article

Eco-friendly management of plant parasitic nematodes

Received Date:09 July 2020, Accepted Date:25 July 2020, Published Date:07 August 2020

Abstract

Background/Objective: Root-knot nematodes and cyst nematodes are two important plant-parasitic nematodes that cause severe plant diseases in various plant species around the world. They act as obligate and biotrophic parasite within the plant body. The objective of the study is to review for suitable management to keep the nematode population density below the threshold level. Methods: In spite of several nematode control practices such as crop rotation, use of biopesticides or nematicides, each has some limitations of their use but biotechnological applications including RNAi or miRNA represent a potential breakthrough in the application of functional genomics for plant nematode control. Here, a comparison is made between some old and modern nematode management practices but recent data shows that application of RNAi or miRNA has a better option of nematode control in some crop plants. Findings: Efficacy and biotechnological success can be maintained by holistic grasping of several soil biological and ecological factors. Therefore, modern approaches those reviewed herein due to their usefulness in minimizing plant nematode populations and increasing crop yield should be incorporated into management systems. The scientific community has entered into a new era that shows the tools to actually unravel the underlying molecular mechanisms, making this an opportunity for a review of our current knowledge and better understanding. Application: These modern eco-friendly practices may not quickly perform as synthetic chemicals, but they are pest specific, non-toxic to humans or environment, and also serves as a sustainable tool for disease management. Novelty: The present communication identifies plant nematode control approaches with emphasis on modern research. This review article emphasized the importance of modern biotechnological approaches for better crop yield than the common older practices.

Keywords: Root-Knot nematode; biotrophic Parasite; threshold level; nematicides; biopesticide; micro RNA

References

  1. Elling AA. Major Emerging Problems with Minor Meloidogyne Species. Phytopathology®. 2013;103(11):1092–1102. Available from: https://dx.doi.org/10.1094/phyto-01-13-0019-rvw
  2. Landau M, Tucker JW. Acute toxicity of EDB and aldicarb to young of two estuarine fish species. Bulletin of Environmental Contamination and Toxicology. 1984;33(1):127–132. Available from: https://dx.doi.org/10.1007/bf01625521
  3. Dutta TK, Banakar P, Rao U. The status of RNAi-based transgenic research in plant nematology. Frontiers in Microbiology. 2015;5:760. Available from: https://dx.doi.org/10.3389/fmicb.2014.00760
  4. Dutta TK, Papolu PK, Banakar P, Choudhary D, Sirohi A, Rao U. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Frontiers in Microbiology. 2015;6:260. Available from: https://dx.doi.org/10.3389/fmicb.2015.00260
  5. Papolu PK, Dutta TK, Tyagi N, Urwin PE, Lilley CJ, Rao U. Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita. Frontiers in Plant Science. 2016;7. Available from: https://dx.doi.org/10.3389/fpls.2016.01122
  6. Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN. Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food and Energy Security. 2017;6:37–47. Available from: https://dx.doi.org/10.1002/fes3.101
  7. Hewezi T, Howe P, Maier TR, Baum TJ. Arabidopsis Small RNAs and Their Targets During Cyst Nematode Parasitism. Molecular Plant-Microbe Interactions®. 2008;21(12):1622–1634. Available from: https://dx.doi.org/10.1094/mpmi-21-12-1622
  8. Medina C, Rocha Md, Magliano M, Ratpopoulo A, Revel B, Marteu N, et al. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. New Phytologist. 2017;216(3):882–896. Available from: https://dx.doi.org/10.1111/nph.14717
  9. Ruiz-Ferrer V, Cabrera J, Martinez-Argudo I, Artaza H, Fenoll C, Escobar C. Silenced retrotransposons are major rasiRNAs targets in Arabidopsis galls induced by Meloidogyne javanica. Molecular Plant Pathology. 2018;19(11):2431–2445. Available from: https://dx.doi.org/10.1111/mpp.12720
  10. Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature. 2018;553(7686):82–85. Available from: https://dx.doi.org/10.1038/nature25027
  11. Zhang LL, Jing XD, Chen W, Wang Y, Lin J, Zheng L. Host plant-derived miRNAs potentially modulate the development of a cosmopolitan insect pest, Plutella xylostella. Biomolecules. 2019;9(10):602.
  12. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654–659. Available from: https://dx.doi.org/10.1038/ncb1596
  13. Zhao Y, Mo B, Chen X. Mechanisms that impact microRNA stability in plants. RNA Biology. 2012;9(10):1218–1223.
  14. Chen H, Jiang S, Zheng J, Lin Y. Improving panicleexcersion of rice cytoplasmic male sterile line by combination of artificial microRNA and artificial target mimic. Plant Biotechnology Journal. 2013;11(3):336–343.
  15. Mitter N, Zhai Y, Bai AX, Chua K, Eid S, Constantin M, et al. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Research. 2016;211:151–158. Available from: https://dx.doi.org/10.1016/j.virusres.2015.10.003
  16. Mcsorley R, Dickson D, Debrito J, Hochmuth R. Tropical rotation crops influence nematode densities and vegetable yields. Journal of Nematology. 1994;26(3):308–314.
  17. Kratochvil RJ, Sardanelli S, Everts K, Gallagher E. Evaluation of Crop Rotation and Other Cultural Practices for Management of Root-Knot and Lesion Nematodes. Agronomy Journal. 2004;96(5):1419–1428. Available from: https://dx.doi.org/10.2134/agronj2004.1419
  18. Davies KG, Fargette M, Balla G, Daud A, Duponnois R, Gowen SR, et al. Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.) Parasitology. 2001;122(1):111–120. doi: 10.1017/s0031182000006958
  19. Ali NI, Siddiqui IA, Shahid Shaukat S, Zaki MJ. Nematicidal activity of some strains of Pseudomonas spp. Soil Biology and Biochemistry. 2002;34(8):1051–1058. doi: 10.1016/s0038-0717(02)00029-9
  20. Khanna K, Jamwal VL, Kohli SK, Gandhi SG, Ohri P, Bhardwaj R, et al. Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant and Soil. 2019;436(1-2):325–345. doi: 10.1007/s11104-019-03932-2
  21. Dowling DN, O'Gara F. Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends in Biotechnology. 1994;12(4):133–141. doi: 10.1016/0167-7799(94)90091-4
  22. Thomashow LS, Weller DM. Current concepts in the use of introduced bacteria for biological disease control. In: S, G, K, N., eds. Plant-microbe interactions. (Vol. 1, pp. 187-235) Chapman & hall. 1995.
  23. Akhtar M, Alam MM. 1993.
  24. Akhtar M, Alam MM. Utilization of waste materials in nematode control: A review. Bioresource Technology. 1993;45(1):1–7. doi: 10.1016/0960-8524(93)90134-w
  25. Gommers FJ. Nematicidal principles in compositae. Mededelingen Landbouwhogeschool, Wageningen. The Netherlands. 1973;73(17):19750823357.
  26. Chitwood DJ. PHYTOCHEMICALBASEDSTRATEGIES FORNEMATODECONTROL. Annual Review of Phytopathology. 2002;40(1):221–249. doi: 10.1146/annurev.phyto.40.032602.130045
  27. Peng R, Xiong A, Li X, Fuan H, Yao Q. A ?-endotoxin encoded in Pseudomonas fluorescens displays a high degree of insecticidal activity. Applied Microbiology and Biotechnology. 2003;63(3):300–306. doi: 10.1007/s00253-003-1343-2
  28. Preston GM. Plant perceptions of plant-growth promoting Pseudomonas. Philosophical Transactions of Royel Society of London B Biological Science. 1446;359:907–918.
  29. Bakker PAHM, Pieterse CMJ, van Loon LC. Induced Systemic Resistance by Fluorescent Pseudomonas spp. Phytopathology®. 2007;97(2):239–243. doi: 10.1094/phyto-97-2-0239
  30. Jeevaratnam K, Jamuna M, Bawa AS. Biological preservation of foods-Bacteriocins of lactic acid bacteria. IndianJournalofBiotechnology. 2005;4(4):446–454.
  31. . MZM, . MS, . AMM, . FD. Inhibitory Effect of Yogurt Lactobacilli Bacteriocins on Growth and Verotoxins Production of Enterohemorrhgic Escherichia coli O157:H7. Pakistan Journal of Biological Sciences. 2006;9(11):2112–2116. doi: 10.3923/pjbs.2006.2112.2116
  32. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – A review. Food and Chemical Toxicology. 2008;46(2):446–475. doi: 10.1016/j.fct.2007.09.106
  33. Indira Gandhi P, Gunasekaran K, Sa T. Neem oil as a potential seed dresser for managing Homopterous sucking pests of Okra (Abelmoschus esculentus (L.) Moench) Journal of Pest Science. 2006;79(2):103–111. doi: 10.1007/s10340-006-0122-0
  34. Mukherjee A, SinhaBabu SP. Potential of Citral and Menthol for Suppression ofMeloidogyne incognitaInfection of Okra Plants. Journal of Essential Oil Bearing Plants. 2014;17(3):359–365. doi: 10.1080/0972060x.2014.895191
  35. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–811. doi: 10.1038/35888
  36. Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology. 2013;14(9):946–961. doi: 10.1111/mpp.12057
  37. Urwin PE, Lilley CJ, Atkinson HJ. Ingestion of Double-Stranded RNA by Preparasitic Juvenile Cyst Nematodes Leads to RNA Interference. Molecular Plant-Microbe Interactions®. 2002;15(8):747–752. doi: 10.1094/mpmi.2002.15.8.747
  38. Zamore PD. Ribo-gnome: The Big World of Small RNAs. Science. 2005;309(5740):1519–1524. doi: 10.1126/science.1111444
  39. Kimber MJ, Mckinney S, Mcmaster S, Day TA, Fleming CC, Maule AG. flG gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB Journal. 2007;21(4):1233–1243.
  40. Park JE, Lee KY, Lee SJ, Oh WS, Jeong PY, Woo T, et al. The efficiency of RNA interference in Bursaphelenchus xylophilus. Molecular Cells. 2008;26(1):81–86.
  41. Dubreuil G, Magliano M, Deleury E, Abad P, Rosso MN. Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytologist. 2007;176(2):426–436. doi: 10.1111/j.1469-8137.2007.02181.x
  42. Bartel DP. MicroRNAs. Cell. 2004;116(2):281–297. doi: 10.1016/s0092-8674(04)00045-5
  43. Yu Y, Jia T, Chen X. The “how” and “where” of plant microRNAs. New Phytologist. 2017;216(4):1002–1017.
  44. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI. Rubio-Somoza I. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics. 2007;39(8):1033–1037.
  45. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, et al. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes & Development. 2006;20(22):3084–3088. doi: 10.1101/gad.402806
  46. Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X. Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. Journal of Experimental Botany. 2015;66(15):4653–4667.
  47. Noon JB, Hewezi T, Baum TJ. Homeostasis in the soybean miRNA396–GRFnetwork is essential for productive soybean cyst nematode infections. Journal of Experimental Botany. 2019;70(5):1653–1668. doi: 10.1093/jxb/erz022
  48. Hewezi T, Lane T, Piya S, Rambani A, Rice JH, Staton M. Cyst Nematode Parasitism Induces Dynamic Changes in the Root Epigenome. Plant Physiology. 2017;174(1):405–420. doi: 10.1104/pp.16.01948
  49. Stephanie PJ, Yara N, Bruno F, Micro Rnas. New Players in the Plant-nematode Interaction. Frontiers in Plant Science. 1180;10:1–8.

Copyright

© 2020 Mukherjee.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

DON'T MISS OUT!

Subscribe now for latest articles and news.