• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 43, Pages: 3190-3198

Original Article

EDAS and TOPSIS based Estimation of Oxidation of Methionine by Cr(VI) Reagents

Received Date:13 August 2021, Accepted Date:09 November 2021, Published Date:14 December 2021

Abstract

Objectives: To find the suitable solvent for the oxidation of methionine by Cr(VI) reagents using EDAS and TOPSIS method. Methods: When methionine oxidized by Cr(VI) complexes i.e. tetrakis(pyridine)silver dichromate (TPSD), quinolinium bromochromate (QBC), tetraethylammonium chlorochromate (TEACC) and quonilinium chlorochromate (QCC) formation of corresponding sulfoxide take place. Reaction performed in chloroform (CF), 1,2- dichloroethane (DCE), dichloromethane (DCM), dimethylsulphoxide (DMSO) and acetone solvents. Findings: Reaction is fastest in DMSO and slowest in acetone for the oxidation of methionine in the following- DMSO, DCE, DCM, acetone, CF. Novelty: Solvent effect is investigated using the rate constant k2; by EDAS and TOPSIS methods.

Keywords: Methionine; Oxidation; Solvent effect; EDAS; TOPSIS

References

  1. Mansoor SS, Shafi SS. Oxidation of benzhydrol by tributylammonium chlorochromate: a kinetic and mechanistic study. Reaction Kinetics, Mechanisms and Catalysis. 2010;100(1):21–31. Available from: https://dx.doi.org/10.1007/s11144-010-0148-4
  2. Bhattacharjee MN, Chaudhuri MK, Dasgupta HS, Roy N, Khathing DT. Pyridinium Fluorochromate; A New and Efficient Oxidant for Organic Substrates. Synthesis. 1982;1982(07):588–590. Available from: https://dx.doi.org/10.1055/s-1982-29872
  3. Pandurangan A, Rajkumar GA, Arabindoo B, Murugesan A. Imidazolium Fluorochromate (IFC): A New, Mild, Stable, and Selective Chromium(VI) Oxidant. ChemInform. 1999;38B:99–100. doi: 10.1002/chin.199929057
  4. Khansole SV, Patwari SB, Vibhute AY, Vibhute YB. Isoquinolinium bromochromate: An efficient and stable reagent for bromination of hydroxylated aromatic compounds and oxidation of alcohols. Chinese Chemical Letters. 2009;20(3):256–260. Available from: https://dx.doi.org/10.1016/j.cclet.2008.11.015
  5. Patel M, Mathur L, Jha K, Kothari A, Shastri I, Sharma PK. Kinetics and Mechanism of the Oxidation of DL-Methionine by Tetrakis (Pyridine) silver Dichromate. Asian Journal of Chemistry. 2013;25(5):2779–2782. Available from: https://dx.doi.org/10.14233/ajchem.2013.13887
  6. Bhuvaneshwari DS, Elango KP. Effect of excess free energy of solvents on the oxidation of methionine by quinolinium fluorochromate: A kinetic study. Journal of the Serbian Chemical Society. 2008;73(7):735–744. Available from: https://dx.doi.org/10.2298/jsc0807735b
  7. Vinita S, Pradeep S, Kalyan KB. Kinetics and mechanism of oxidation of methionine by pyridinium bromochromate. Indian Journal of Chemistry. 1997;36A(5):418–420. doi: 10.2298/JSC0502145P
  8. Zaheer K, Rafiquee MZA, Kabir-Ud-Din. Oxidation of l-methionine with aqueous chromic acid: a kinetic study. Transition Metal Chemistry. 1997;22:350–355. Available from: https://doi.org/10.1023/A:1018457701269
  9. Neha M, Manju B, Pradeep KS. Kinetics and mechanism of the oxidation of some organic sulfides by morpholinium chlorochromate. International Journal of Chemical Kinetics. 2009;41(1):65–72. doi: 10.1002/kin.20372
  10. McCann JP, McAuley A. Metal-ion oxidations in solution. Part XIII. The reaction of chromium(VI) with L-cysteine in perchlorate media. Journal of the Chemical Society. 1975;9:783–790. Available from: https://doi.org/10.1039/DT9750000783
  11. Alfassi ZB. S-Centered Radicals. Chichester, UK.. John Wiley & Sons Ltd. 1999.
  12. Townsend DM, Tew KD, Tapiero H. Sulfur containing amino acids and human disease. Biomedicine & Pharmacotherapy. 2004;58(1):47–55. Available from: https://dx.doi.org/10.1016/j.biopha.2003.11.005
  13. Lai S, Lepage CJ, Lee DG. Oxygen Transfer Reactions. 4. Reaction of High Valent Oxoruthenium Compounds with Sulfides. Inorganic Chemistry. 2002;41(7):1954–1957. Available from: https://dx.doi.org/10.1021/ic0108336
  14. Schfneich C. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. (Vol. 1703, pp. 111-119) 2005.
  15. Marciniak B, Hug GL, Bobrowski K, Kozubek H. Mechanism of 4-carboxybenzophenone-sensitized photooxidation of methionine-containing dipeptides and tripeptides in aqueous solution. The Journal of Physical Chemistry. 1995;99(36):13560–13568. Available from: https://dx.doi.org/10.1021/j100036a037
  16. Pogocki D, Ghezzo-Schöneich E, Schöneich C. Conformational Flexibility Controls Proton Transfer between the Methionine Hydroxy Sulfuranyl Radical and the N-Terminal Amino Group in Thr−(X)n−Met Peptides. The Journal of Physical Chemistry B. 2001;105(6):1250–1259. Available from: https://dx.doi.org/10.1021/jp003450m
  17. Stadtman ER, Remmen HV, Richardson A, Wehr NB, Levine RL. Methionine oxidation and aging. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2005;1703(2):135–140. Available from: https://dx.doi.org/10.1016/j.bbapap.2004.08.010
  18. Yatin SM, Sridhar V, CDL, Butterfield DA. In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid ß-peptide (1-42) Neurobiology of Aging. 1999;20(3):56–57. Available from: https://doi.org/10.1016/S0197-4580(99)00056-1
  19. Perrin D, Koppenol WH. The Quantitative Oxidation of Methionine to Methionine Sulfoxide by Peroxynitrite. Archives of Biochemistry and Biophysics. 2000;377(2):266–272. Available from: https://dx.doi.org/10.1006/abbi.2000.1787
  20. Whitelegge JP, Penn B, To T, Johnson J, Waring A, Sherman M, et al. Methionine oxidation within the cerebroside-sulfate activator protein (CSAct or Saposin B) Protein Science. 2000;9(9):1618–1630. doi: 10.1110/ps.9.9.1618
  21. Stadtman ER. Importance of individuality in oxidative stress and aging. Free Radical Biology and Medicine. 2002;33(5):597–604. Available from: https://dx.doi.org/10.1016/s0891-5849(02)00904-8
  22. Bettinger JQ, Welle KA, Hryhorenko JR, Ghaemmaghami S. Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome. Journal of Proteome Research. 2020;19(2):624–633. Available from: https://dx.doi.org/10.1021/acs.jproteome.9b00505
  23. Zang J, Chen Y, Zhu W, Lin S. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Biochemistry. 2020;59(2):132–138. Available from: https://dx.doi.org/10.1021/acs.biochem.9b00789
  24. Castaño C, Thomas AH, Lorente C. Type I Photosensitized Oxidation of Methionine †. Photochemistry and Photobiology. 2021;97(1):91–98. Available from: https://dx.doi.org/10.1111/php.13314
  25. Bettinger J, Ghaemmaghami S. Methionine oxidation within the prion protein. Prion. 2020;14(1):193–205. Available from: https://dx.doi.org/10.1080/19336896.2020.1796898
  26. Aussel L, Ezraty B. Methionine Redox Homeostasis in Protein Quality Control. Frontiers in Molecular Biosciences. 2021;8:243. Available from: https://dx.doi.org/10.3389/fmolb.2021.665492
  27. Harris S, Weinzettel J, Bigano A, Källmén A. Low carbon cities in 2050? GHG emissions of European cities using production-based and consumption-based emission accounting methods. Journal of Cleaner Production. 2020;248:119206. Available from: https://dx.doi.org/10.1016/j.jclepro.2019.119206
  28. Li Y, Wang C, Li G, Wang J, Zhao D, Chen C. Improving operational flexibility of integrated energy system with uncertain renewable generations considering thermal inertia of buildings. Energy Conversion and Management. 2020;207:112526. Available from: https://dx.doi.org/10.1016/j.enconman.2020.112526
  29. Huang Q, Jia QS, Guan X. A Review of EV Load Scheduling with Wind Power Integration. IFAC-PapersOnLine. 2015;48(28):223–228. Available from: https://dx.doi.org/10.1016/j.ifacol.2015.12.129
  30. Moustakas K, Loizidou M, Rehanand M, Nizami A. New developments in sustainable waste-to-energy systems. Renewable and Sustainable Energy Reviews. 2020;151:111581. Available from: https://doi.org/10.1016/j.rser.2021.111581
  31. Ghorabaee MK, Zavadskas EK, Olfat L, Turskis Z. Multi-Criteria Inventory Classification Using a New Method of Evaluation Based on Distance from Average Solution (EDAS) Informatica. 2015;26(3):435–451. Available from: https://dx.doi.org/10.15388/informatica.2015.57
  32. Ecer F. Third-party logistics (3PLS) provider selection via fuzzy AHP and EDAS integrated model. Technological and Economic Development of Economy. 2017;24(2):615–634. Available from: https://dx.doi.org/10.3846/20294913.2016.1213207
  33. Turskis Z, Morkunaite Z, Kutat V. A hybrid multiple criteria evaluation method of ranking of cultural heritage structures for renovation projects. International Journal of Strategic Property Management. 2017;21(3):318–329. Available from: https://dx.doi.org/10.3846/1648715x.2017.1325782
  34. Juodagalvienė B, Turskis Z, Šaparauskas J, Endriukaitytė A. Integrated multi-criteria evaluation of house’s plan shape based on the EDAS and SWARA methods. Engineering Structures and Technologies. 2017;9:117–125. Available from: https://dx.doi.org/10.3846/2029882x.2017.1347528
  35. Stević Ž, Pamučar D, Vasiljević M, Stojić G, Korica S. Novel Integrated Multi-Criteria Model for Supplier Selection: Case Study Construction Company. Symmetry. 2017;9(11):279. Available from: https://dx.doi.org/10.3390/sym9110279
  36. Singh J, Kalsi PS, Jawanda GS, Chhabra BR. Quinolinium Chlorochromate: A Selective Oxidizing Agent. ChemInform. 1987;18(14):751–756. Available from: https://dx.doi.org/10.1002/chin.198714118
  37. Pandurangan A, Murugesan V, Palanichamy M. Quinolinium Bromochromate: A New, Selective and Efficient Reagent for the Oxidation of Alcohols in Anhydrous Acetic Acid. Journal of the Indian Chemical Society. 1995;72(7). doi: 10.1002/chin.199622065
  38. Pandurangan A, Murugesan V. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Tetraethylammonium Chlorochromate: A New Chromium (VI) Oxidant. Journal of the Indian Chemical Society. 1996;73:484–486. doi: 10.1002/chin.199738047
  39. Perrin DD, Armarego WL, Perrin DR. Purification of organic compounds. Oxford. Pergamon Press. 1966.

Copyright

© 2021 Rao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.