• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 17, Pages: 1260-1267

Original Article

Effect of Active Dithiocarbamate Derivatives on Copper Nano Film Deposition

Received Date:13 January 2023, Accepted Date:10 April 2023, Published Date:28 April 2023

Abstract

Objective: The coordination and electrochemistry-related effects and uses of piperidine dithiocarbamate (pipdtc) and piperazine dithiocarbamate (pzdtc) are the main topics of this article. Method: An environment friendly electroless bath was created using a very small amount of biodegradable methanesulphonic bronsted acid, Glyoxylic acid as a reducing agent, Xylitol as a non-toxic natural polyhydroxylic complexing agent and potassium hydroxide as pH modifier. Compact and finer deposits were obtained at pH 13.0 and 45◦C with an addition of 1 ppm of pipdtc and pzdtc in an optimized bath. Findings: The inhibiting effect of pipdtc and pzdtc additives depends on deposit properties, throwing power, thickness uniformity, surface tension and grain structure management. Novelty: In this electroless copper plating method, pipdtc and pzdtc improved the physical properties and produced quality deposits. Gravimetric and weight gain calculations were used to determine the physical parameters. AFM experiments were used to describe the surface morphologies of copper deposits. By using X-ray diffractogram (XRD) analysis, the copper deposits’ crystallite sizes were quantified, and cyclic voltammetry analysis was used to assess their quality. Keywords: Glyoxylic acid; Piperazine dithiocarbamate; Piperidine dithiocarbamate; Surface morphology; Xylitol

References

  1. Ajiboye TO, Ajiboye TT, Marzouki R, Onwudiwe DC. The Versatility in the Applications of Dithiocarbamates. International Journal of Molecular Sciences. 2022;23(3):1317. Available from: https://doi.org/10.3390/ijms23031317
  2. Tan YS, Yeo CI, Tiekink ERT, Heard PJ. Dithiocarbamate Complexes of Platinum Group Metals: Structural Aspects and Applications. Inorganics. 2021;9(8):60. Available from: https://doi.org/10.3390/inorganics9080060
  3. Ayalew ZM, Zhang X, Guo X, Ullah S, Leng S, Luo X, et al. Removal of Cu, Ni and Zn directly from acidic electroplating wastewater by Oligo-Ethyleneamine dithiocarbamate (OEDTC) Separation and Purification Technology. 2020;248:117114. Available from: https://doi.org/10.1016/j.seppur.2020.117114
  4. Zeng Q, Hu S, Zheng W, He Z, Zhou L, Huang Y. Spongy Crosslinked Branched Polyethylenimine-Grafted Dithiocarbamate: Highly Efficient Heavy Metal Ion–Adsorbing Material. Journal of Environmental Engineering. 2020;146(2). Available from: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001638
  5. Duran-García EI, Martínez-Santana J, Torres-Gómez N, Vilchis-Nestor AR, García-Orozco I. Copper sulfide nanoparticles produced by the reaction of N-alkyldithiocarbamatecopper(II) complexes with sodium borohydride. Materials Chemistry and Physics. 2021;269:124743. Available from: https://doi.org/10.1016/j.matchemphys.2021.124743
  6. Oliveira JWdF, Rocha HAO, Medeiros WMTQd, Silva MS. Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological. Molecules. 2019;24(15):2806. Available from: https://doi.org/10.3390/molecules24152806
  7. Adeyemi JO, Onwudiwe DC. The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chimica Acta. 2020;511:119809. Available from: https://doi.org/10.1016/j.ica.2020.119809
  8. Balaramesh P, Jayalakshmi S, Fdo SA, Anitha V, Venkatesh P. Thin film to nano copper deposition by special additives on an ecofriendly electroless bath. Materials Today: Proceedings. 2021;47(9):1862–1867. Available from: https://doi.org/10.1016/j.matpr.2021.03.513
  9. Dev A, Tandon S, Jha P, Singh P, Dutt A. Investigation of process parameters in electroless copper plating on polystyrene. Sādhanā. 2020;45(156). Available from: https://doi.org/10.1007/s12046-020-01377-3
  10. Ajiboye TO, Oluwarinde BO, Montso PK, Ateba CN, Onwudiwe DC. Antimicrobial activities of Cu(II), In(III), and Sb(III) complexes of N-methyl-N–phenyl dithiocarbamate complexes. Results in Chemistry. 2021;3:100241. Available from: https://doi.org/10.1016/j.rechem.2021.100241
  11. Odularu AT, Ajibade PA. Dithiocarbamates: Challenges, Control, and Approaches to Excellent Yield, Characterization, and Their Biological Applications. Bioinorganic Chemistry and Applications. 2019;2019:1–15. Available from: https://doi.org/10.1155/2019/8260496
  12. Al‐janabi ASM, Kadhim MM, Al‐nassiry AIA, Yousef TA. Antimicrobial, computational, and molecular docking studies of Zn (II) and Pd (II) complexes derived from piperidine dithiocarbamate. Applied Organometallic Chemistry. 2021;35(2):e6108. Available from: https://doi.org /10. 1002/aoc.6108
  13. Salman MM, Al-Dulaimi AA, Al-Janabi ASM, Alheety MA. Novel dithiocabamate nano Zn(II), Cd(II) and Hg(II) complexes with pyrrolidinedithiocarbamate and N,N-diethyldithiocarbamate. Materials Today: Proceedings. 2021;43(2):863–868. Available from: https://doi.org/10.1016/j.matpr.2020.07.082
  14. Mohammadi I, Shahrabi T, Mahdavian M, Izadi M. Cerium/diethyldithiocarbamate complex as a novel corrosion inhibitive pigment for AA2024-T. Scientific Reports. 2020;10(5043):1–15. Available from: https://doi: 10.1038/s41598-020-61946-8
  15. Shin A, Kim BK, Kim M, Jeong M, Lee D, Ha H, et al. Microstructural and physicochemical origins of electroless copper deposition on graphite enhanced by acid pretreatment. Materials Chemistry and Physics. 2023;295:127118. Available from: https://doi.org/10.1016/j.matchemphys.2022.127118
  16. Pastrana-Dávila A, Amaya-Flórez A, Aranaga C, Ellena J, Macías M, Flórez-López E, et al. Synthesis, characterization, and antibacterial activity of dibenzildithiocarbamate derivates and Ni(II)–Cu(II) coordination compounds. Journal of Molecular Structure. 2021;1245:131109. Available from: https://doi.org/10.1016/j.molstruc.2021.131109
  17. Adeyemi JO, Onwudiwe DC. The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chimica Acta. 2020;511:119809. Available from: https://doi.org/10.1016/j.ica.2020.119809
  18. Kadhim MM, Juber LAA, Al-Janabi ASM. Estimation of the Efficiency of Corrosion Inhibition by Zn-Dithiocarbamate Complexes: a Theoretical Study. Iraqi Journal of Science. 2021;62(9):3323–3335. Available from: https://doi.org/10.24996/ijs.2021.62.9(SI).3
  19. Huang JH, Shih PS, Renganathan V, Grӓfner SJ, Chen YA, Huang CH, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper ‐ glycerin complex solution. Electrochimica Acta. 2022;425:140710. Available from: https://doi.org/10.1016/j.electacta.2022.140710
  20. Mohammadi I, Shahrabi T, Mahdavian M, Izadi M. Cerium/diethyldithiocarbamate complex as a novel corrosion inhibitive pigment for AA2024-T3. Scientific Reports. 2020;10(5043 ):1–15. Available from: https://doi.org/10.1038/s41598-020-61946-8
  21. Hui WQ, Song LX. Study on new process of electroless copper plating pretreatment on carbon fiber surface. Materials Research Express. 2023;10(2):1–8. Available from: https://doi.org/10.1088/2053-1591/acac02

Copyright

© 2023 Balaramesh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee

DON'T MISS OUT!

Subscribe now for latest articles and news.