• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 24, Pages: 1810-1822

Original Article

Effect of Hot Rolling on Microstructure and Mechanical Properties of Stir Cast AZ 61 Alloy with Minor Additions

Received Date:27 February 2023, Accepted Date:03 June 2023, Published Date:24 June 2023


Objective: The microstructure and mechanical properties of modified AZ 61 alloy -graphene composite (1wt. %, and 2wt. % graphene) were examined under various conditions of temperature of rolling, number of roll pass, and the amount of deformation. Method: The rolling operation was carried out in a laboratory scale rolling with the initial stock temperature of 4000C. The rolling temperatures were varied and kept at 3500C 3000C, and 2500C. After a few roll passes, the rolled stocks were reinserted within the furnace to make up for the temperature drop. The rolling was continued until the amount of thickness reduction reached 35%. The number of passes varied between 1-4. It was observed that the influence of rolling temperature was quite sensitive to the number of passes to reach the target deformation ~35%. Finding: The study on the structure and properties of hot rolled graphene-reinforced AZ-61 magnesium alloy with minor additions of scandium and calcium is scarce in the literature. Novelty: In the present investigation attempts are made to probe into the effect of graphene reinforcement in AZ-61 alloy that is compositionally modified by minor additions of scandium and calcium with the expectation of a higher level of strengthening. The results showed that maximum hardness values ranged with in 101HV to 106HV whereas, the maxima of tensile and yield strength were found to be 266 .82 MPa and 102 MPa at an elongation percent of 25%. By refining the microstructure, dynamic recrystallization enhanced the samples’ strength and ductility. AZ 61 graphene composite with minor additions of scandium and calcium achieves excellent structural homogeneity and mechanical properties after hot rolling with 2 wt. % graphene rolled at 3500C.

Keywords: AZ61 Alloy; Rolling Temperature; Graphene; Composite; Tensile Strength; Deformation Percentage


  1. Hun LJ, SWL, Park SH. Microstructural characteristics of magnesium alloy sheets subjected to high-speed rolling and their rolling temperature dependence. Journal of Materials Research and Technology. 2019;8(3):3167–3174. Available from: https://doi.org/10.1016/j.jmrt.2018.11.020
  2. Jiadong D, Jikang L, Zhe C, Dongsheng Q, Huajie M, Yin F. An experiment study on a novel constructive hot ring rolling process. Procedia Manufacturing. 2020;50:134–138. Available from: https://doi.org/10.1016/j.promfg.2020.08.025
  3. Lee JUJH, Lee CS, Park SH. Dynamic recrystallization behavior and microstructural evolution of Mg alloy AZ31 through high-speed rolling. Journal of Materials Science & Technology. 2018;34(10):1747–1755. Available from: https://doi.org/10.1016/j.jmst.2018.03.002
  4. Zhi C, Lei J, Xing H, Huang Z, Xu H, Jia W, et al. Tensile fracture prediction of AZ31 cast-rolled sheet based on hot working map. Journal of Materials Research and Technology. 2023;23:3272–3283. Available from: https://doi.org/10.1016/j.jmrt.2023.01.223
  5. Javaid A, Czerwinski F. Effect of hot rolling on microstructure and properties of the ZEK100 alloy. Journal of Magnesium and Alloys. 2019;7(1):27–37. Available from: https://doi.org/10.1016/j.jma.2019.02.001
  6. Banerjee S, Sahoo P, Davim JP. Tribological characterisation of magnesium matrix nanocomposites: A review. Advances in Mechanical Engineering. 2021;13(4). Available from: https://doi.org/10.1177/16878140211009025
  7. Kaiser MS, Datta S, Roychowdhury A, Banerjee MK. Age Hardening Behavior of Wrought Al–Mg–Sc Alloy. Materials and Manufacturing Processes. 2007;23(1):74–81. Available from: https://doi.org/10.1080/10426910701524600
  8. Huang SJ, Subramani M, Borodianskiy K, Immanuel PN, Chiang CC. Effect of equal channel angular pressing on the mechanical properties of homogenized hybrid AZ61 magnesium composites. Materials Today Communications. 2023;34:104974. Available from: https://doi.org/10.1016/j.mtcomm.2022.104974
  9. Huang SJ, Subramani M, Borodianskiy K. Strength and ductility enhancement of AZ61/Al2O3/SiC hybrid composite by ECAP processing. Materials Today Communications. 2022;31:103261. Available from: https://doi.org/10.1016/j.mtcomm.2022.103261
  10. Ding Y, Shi Z, Li Z, Jiao S, Hu J, Wang X, et al. Effect of CNT Content on Microstructure and Properties of CNTs/Refined-AZ61 Magnesium Matrix Composites. Nanomaterials. 12(14):2432. Available from: https://doi.org/10.3390/nano12142432
  11. Huang SJ, Subramani M, Borodianskiy K, Immanuel PN, Chiang CC. Effect of equal channel angular pressing on the mechanical properties of homogenized hybrid AZ61 magnesium composites. Materials Today Communications. 2023;34:104974. Available from: https://doi.org/10.1016/j.mtcomm.2022.104974
  12. Shan Z, Yang J, Fan J, Zhang H, Zhang Q, Wu Y, et al. Extraordinary mechanical properties of AZ61 alloy processed by ECAP with 160° channel angle and EPT. Journal of Magnesium and Alloys. 2021;9(2):548–559. Available from: https://doi.org/10.1016/j.jma.2020.02.028
  13. Subramani M, Tzeng YC, Tseng LW, Tsai YK, Chen GS, Chung CY, et al. Hot deformation behavior and processing map of AZ61/SiC composites. Materials Today Communications. 2021;29:102861. Available from: https://doi.org/10.1016/j.mtcomm.2021.102861
  14. Huang SJJ, Subramani M, Ali AN, Alemayehu DB, Aoh JN, Lin PC. The Effect of Micro-SiCp Content on the Tensile and Fatigue Behavior of AZ61 Magnesium Alloy Matrix Composites. International Journal of Metalcasting. 2021;15(3):780–793. Available from: https://doi.org/10.1007/s40962-020-00508-0
  15. Guo L, Fujita F. Modeling the microstructure evolution in AZ31 magnesium alloys during hot rolling. Journal of Materials Processing Technology. 2018;255:716–723. Available from: https://doi.org/10.1016/j.jmatprotec.2018.01.025
  16. Shahin M, Munir K, Wen C, Li Y. Magnesium-based composites reinforced with graphene nanoplatelets as biodegradable implant materials. Journal of Alloys and Compounds. 2020;828:154461. Available from: https://doi.org/10.1016/j.jallcom.2020.154461
  17. Vahedi F, Zarei-Hanzaki A, Salandari-Rabori A, Abedi HR, Razaghian A, Minarik P. Microstructural evolution and mechanical properties of thermomechanically processed AZ31 magnesium alloy reinforced by micro-graphite and nano-graphene particles. Journal of Alloys and Compounds. 2020;815:152231. Available from: https://doi.org/10.1016/j.jallcom.2019.152231


© 2023 Tiwari et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.