• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 47, Pages: 4469-4480

Original Article

Evaluation of Micro Hardness and Wear Characteristics of Gyroid Designed Ti-6Al-4V Fabricated Through DMLS Technique

Received Date:17 October 2023, Accepted Date:23 October 2023, Published Date:20 December 2023


Objectives: To investigate the Micro Hardness, Micro structures and wear characteristics of the TPMS (Triply Periodic Minimal Surface) Gyroid structures with optimized porosity percentage for Bio medical application. Methods: Micro Hardness tester is used to find the micro hardness of the as cast Ti-6AL-4V and Gyroid Ti-6Al-4V Sample. Wear tests using pin-on-disc tribometer was used to assess the Gyroid Ti-6Al-4V wear samples for various loads and sliding velocity. The wear test parameters were test as load of 10, 30 & 50 N, with the sliding velocity of 0.5, 1.0 7 1.5 m/s. Atomic force microscope has been used for finding the surface roughness of the as cast and Gyroid Ti-6Al-4V samples before and after wear test. Findings: According to the test results. It is found that Gyroid Ti-6Al-4V samples posses more wear resistance than as cast Ti-6Al-4V. The micro hardness test results depicted clearly that, the Gyroid Ti-6Al-4V alloy posses’ micro hardness of 408 HV in comparison with as cast Ti-6Al-4V alloys’ hardness of 358 HV. The morphological characteristics of the worn-out samples were investigated using scanning electron microscope. At higher sliding conditions occurrence of large friction events lead to higher wear rates and the periodic localised fracture of transfer layer. At low sliding conditions, the Gyroid Ti-6Al-4V samples experienced ploughing, peeling off, plastic deformation types of wear mechanism. Novelty: The wear modes were categorised by the Fuzzy C-means algorithm, and a novel PNN tool in MATLAB created a wear map mechanism suitable for the Gyroid Ti alloy. The research conducted in this paper demonstrates a novel methodology for investigating wear mapping using a Probabilistic Neural Network on wear samples with a Gyroid lattice structure.

Keywords: TPMS, Lattice/porous structure, Micro Hardness, Wear Characteristics, Ti-6Al-4V


  1. Gadagi B, Lekurwale R. A review on advances in 3D metal printing. Materials Today: Proceedings. 2021;45(Part 1):277–283. Available from: https://doi.org/10.1016/j.matpr.2020.10.436
  2. Salmi M. Additive Manufacturing Processes in Medical Applications. Materials. 2021;14(1):1–16. Available from: https://doi.org/10.3390/ma14010191
  3. Chen LY, Liang SX, Liu Y, Zhang LC. Additive manufacturing of metallic lattice structures: Unconstrained design, accurate fabrication, fascinated performances, and challenges. Materials Science and Engineering: R: Reports. 2021;146:100648. Available from: https://doi.org/10.1016/j.mser.2021.100648
  4. Mondal P, Das A, Wazeer A, Karmakar A. Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization. International Journal of Lightweight Materials and Manufacture. 2022;5(3):384–396. Available from: https://doi.org/10.1016/j.ijlmm.2022.04.005
  5. Liverani E, Rogati G, Pagani S, Brogini S, Fortunato A, Caravaggi P. Mechanical interaction between additive-manufactured metal lattice structures and bone in compression: implications for stress shielding of orthopaedic implants. Journal of the Mechanical Behavior of Biomedical Materials. 2021;121:104608. Available from: https://doi.org/10.1016/j.jmbbm.2021.104608
  6. Benady A, Meyer SJ, Golden E, Dadia S, Levy GK. Patient-specific Ti-6Al-4V lattice implants for critical-sized load-bearing bone defects reconstruction. Materials & Design. 2023;226:1–13. Available from: https://doi.org/10.1016/j.matdes.2023.111605
  7. Azarniya A, Colera XG, Mirzaali MJ, Sovizi S, Bartolomeu F, Weglowski MS, et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. Journal of Alloys and Compounds. 2019;804:163–191. Available from: https://doi.org/10.1016/j.jallcom.2019.04.255
  8. Singla AK, Banerjee M, Sharma A, Singh J, Bansal A, Gupta MK, et al. Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments. Journal of Manufacturing Processes. 2021;64:161–187. Available from: https://doi.org/10.1016/j.jmapro.2021.01.009
  9. Koju N, Niraula S, Fotovvati B. Additively Manufactured Porous Ti6Al4V for Bone Implants: A Review. Metals. 2022;12(4):1–34. Available from: https://doi.org/10.3390/met12040687
  10. Sharma S, Meena A. Microstructure attributes and tool wear mechanisms during high-speed machining of Ti-6Al-4V. Journal of Manufacturing Processes. 2020;50:345–365. Available from: https://doi.org/10.1016/j.jmapro.2019.12.029
  11. Kelly CN, Kahra C, Maier HJ, Gall K. Processing, structure, and properties of additively manufactured titanium scaffolds with gyroid-sheet architecture. Additive Manufacturing. 2021;41:101916. Available from: https://doi.org/10.1016/j.addma.2021.101916
  12. Sallica-Leva E, Costa FHD, Santos CTD, Jardini AL, Silva JVLD, Fogagnolo JB. Microstructure and mechanical properties of hierarchical porous parts of Ti-6Al-4V alloy obtained by powder bed fusion techniques. Rapid Prototyping Journal. 2022;28(4):732–746. Available from: https://doi.org/10.1108/RPJ-04-2021-0078
  13. Li J, Wu H, Liu H, Zuo D. Surface and property characterization of selective laser-melted Ti-6Al-4V alloy after laser polishing. The International Journal of Advanced Manufacturing Technology. 2023;128:703–714. Available from: https://doi.org/10.1007/s00170-023-11880-6
  14. Liu Y, Zhang J, Tan Q, Yin Y, Li M, Zhang MX. Mechanical performance of simple cubic architected titanium alloys fabricated via selective laser melting. Optics & Laser Technology. 2021;134:106649. Available from: https://doi.org/10.1016/j.optlastec.2020.106649
  15. Mahmoud D, Elbestawi MA, Yu B. Process–Structure–Property Relationships in Selective Laser Melting of Porosity Graded Gyroids. Journal of Medical Devices. 2019;13(3):1–11. Available from: https://doi.org/10.1115/1.4043736
  16. Thijs L, Verhaeghe F, Craeghs T, Humbeeck JV, Kruth JP. A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia. 2010;58(9):3303–3312. Available from: https://doi.org/10.1016/j.actamat.2010.02.004
  17. Bai L, Gong C, Chen X, Sun Y, Zhang J, Cai L, et al. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals. 2019;9(9):1–26. Available from: https://doi.org/10.3390/met9091004
  18. Caha I, Alves AC, Chirico C, Tsipas SA, Rodrigues IR, Pinto AMP, et al. Interactions between wear and corrosion on cast and sintered Ti-12Nb alloy in comparison with the commercial Ti-6Al-4V alloy. Corrosion Science. 2020;176:108925. Available from: https://doi.org/10.1016/j.corsci.2020.108925
  19. Skvortsova S, Orlov A, Valyano G, Spektor V, Mamontova N. Wear Resistance of Ti–6Al–4V Alloy Ball Heads for Use in Implants. Journal of Functional Biomaterials. 2021;12(4):1–10. Available from: https://doi.org/10.3390/jfb12040065
  20. Alemanno F, Peretti V, Tortora A, Spriano S. Tribological Behaviour of Ti or Ti Alloy vs. Zirconia in Presence of Artificial Saliva. Coatings. 2020;10(9):1–10. Available from: https://doi.org/10.3390/coatings10090851
  21. Attar H, Bermingham MJ, Ehtemam-Haghighi S, Dehghan-Manshadi A, Kent D, Dargusch MS. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Materials Science and Engineering: A. 2019;760:339–345. Available from: https://doi.org/10.1016/j.msea.2019.06.024
  22. Wang B, Zhao X, Li S, Huang S, Lai W, You D, et al. Self-lubricating coating with zero weight loss performance on additively manufactured Ti-6Al-4V. Surface and Coatings Technology. 2022;447:128847. Available from: https://doi.org/10.1016/j.surfcoat.2022.128847
  23. Williams DF. Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Frontiers in Bioengineering and Biotechnology. 2019;7:1–10. Available from: https://doi.org/10.3389/fbioe.2019.00255
  24. Jagadeesh GV, Setti SG. Tribological Performance Evaluation of Ball Burnished Magnesium Alloy for Bioresorbable Implant Applications. Journal of Materials Engineering and Performance. 2022;31(2):1170–1186. Available from: https://doi.org/10.1007/s11665-021-06228-8
  25. Özerinç S, Kaygusuz B, Kaş M, Motallebzadeh A, Nesli Ş, Duygulu Ö, et al. Micromechanical Characterization of Additively Manufactured Ti-6Al-4V Parts Produced by Electron Beam Melting. JOM. 2021;73(10):3021–3033. Available from: https://doi.org/10.1007/s11837-021-04804-w
  26. Jamshidi P, Aristizabal M, Kong W, Villapun V, Cox SC, Grover LM, et al. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. Materials. 2020;13(12):1–16. Available from: https://doi.org/10.3390/ma13122813
  27. Azarniya A, Colera XG, Mirzaali MJ, Sovizi S, Bartolomeu F, Weglowski MS, et al. Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. Journal of Alloys and Compounds. 2019;804:163–191. Available from: https://doi.org/10.1016/j.jallcom.2019.04.255
  28. Wang M, Jia S, Chen E, Yang S, Liu P, Qi Z. Research and application of neural network for tread wear prediction and optimization. Mechanical Systems and Signal Processing. 2022;162:108070. Available from: https://doi.org/10.1016/j.ymssp.2021.108070


© 2023 Devaraj & Srinivasan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.