• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 13, Pages: 1252-1262

Original Article

Evaluation of the Performance of the ATESTA Forced Convection Dryer when Drying Pineapples

Received Date:21 October 2023, Accepted Date:28 February 2024, Published Date:21 March 2024

Abstract

Objective: Evaluating the performance of the ATESTA [Solar Energy and Appropriate Technology Workshop] forced convection dryer, developed at the Albert Schweitzer Ecological Center of Burkina [CEAS Burkina], on the drying of pineapple slices in Togo. Method: For this purpose, two ATESTA dryers were setup in a company in Lomé, Togo, one operating in forced convection and the other, the witness, in natural convection mode. Drying tests of pineapple slices were carried out with these two dryers. Data were collected on water loss, organoleptic parameters and energy consumption during the drying process Findings: The results showed that the water loss rate increased by 11.4% as well as the first choice dry matter content by 36% and an energy saving of 21% percent of natural convection to forced convection. This performance of the ATESTA forced convection dryer increases the economic profit of USD [United States Dollar] 2.68/kg or USD 45.52/drying cycle and USD 2678.40/t of dried pineapples. The results of microbiological analyses revealed that the total flora [1.2.102 CFU/g] [Colony-Forming Unit per gram] yeast and mold [6.4.101 CFU/g] content of pineapple slices dried by the ATESTA forced convection dryer were in line with the limit values of the Directive 2000/13/EC [European Parliament and the Council]. Novelty: Performance tests on the forced convection dryer have made a more efficient dryer available to pineapple processors. Forced convection can also be adapted to existing dryers.

Keywords: Performance, ATESTA dryer, Togo, Forced convection, Dried prineapple

References

  1. Santos DI, Martins CF, Amaral RA, Brito L, Saraiva JA, Vicente AA, et al. Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules. 2021;26(11):1–17. Available from: https://doi.org/10.3390/molecules26113216
  2. Muyonga JH, Natocho J, Kigozi J, Baidhe E, Nansereko S. Drying behaviour and optimization of drying conditions of pineapple puree and slices using refractance window drying technology. Journal of Food Science and Technology. 2022;59(7):2794–2803. Available from: https://doi.org/10.1007/s13197-021-05302-2
  3. Rulazi EL, Marwa J, Kichonge B, Kivevele TT. Techno-economic analysis of a solar-assisted heat pump dryer for drying agricultural products. Food Science & Nutrition. 2024;12(2):952–970. Available from: https://doi.org/10.1002/fsn3.3810
  4. Boroze TE, Azouma YO, Ahanogbe K, Barate M. Séchage solaire de céréales: cinétiques, évaluations thermo-hygrométrique et énergétique. Journal de la Société Ouest-Africaine de Chimie. 2019;46:41–49. Available from: https://centralesupelec.hal.science/hal-03353511/document
  5. Azouma YO, Drigalski L, Jegla Z, Reppich M, Turek V, Weiß M. Indirect Convective Solar Drying Process of Pineapples as Part of Circular Economy Strategy. Energies. 2019;12(15):1–18. Available from: https://doi.org/10.3390/en12152841
  6. Rivier M, Méot JM, Ferré T, Briard M. Le séchage des mangues. (pp. 1-112) 2009.
  7. Kjeldahl C. A new method for the determination of nitrogen in organic matter. Journal of Analytical Chemistry. 1883;22:366–382. Available from: http://dx.doi.org/10.1007/BF01338151
  8. Alzieu C, Michel P, Thibaud Y. Presence de micropolluants dans les mollusques littoraux. Science et Pêche. 1976;264:1–18. Available from: https://archimer.ifremer.fr/doc/1976/publication-7125.pdf
  9. Merrill AL, Watt BK. Energy value of foods: basis and derivation, Agriculture Handbook. (Vol. 74, pp. 1-109) 1955.
  10. Sileshi ST, Hassen AA, Adem KD. Simulation of mixed-mode solar dryer with vertical air distribution channel. Heliyon. 2022;8(11):1–12. Available from: https://doi.org/10.1016/j.heliyon.2022.e11898
  11. Huet R. La composition chimique de l'ananas. Fruits. 1958;13(5):183–197. Available from: https://agritrop.cirad.fr/457516/1/document_457516.pdf
  12. Elangovan E, Natarajan SK. Convective and evaporative heat transfer coefficients during drying of ivy gourd under natural and forced convection solar dryer. Environmental Science and Pollution Research. 2022;30(4):10469–10483. Available from: https://doi.org/10.1007/s11356-022-22865-5
  13. Kang H, Zhang G, Mu G, Zhao C, Huang H, Kang C, et al. Design of a Greenhouse Solar-Assisted Heat Pump Dryer for Kelp (Laminaria japonica): System Performance and Drying Kinetics. Foods. 2022;11(21):1–15. Available from: https://doi.org/10.3390/foods11213509

Copyright

© 2024 Soulama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.