• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: Special Issue 1, Pages: 144-148

Original Article

Exploration of CCD-Number for Some Specific Graphs

Received Date:29 August 2023, Accepted Date:05 March 2024, Published Date:31 May 2024


Objectives: A dominating set S of a graph G is said to be a complementary corona dominating set (CCD-set) if every vertex in is either a pendent vertex or a support vertex. The smallest cardinality of a CCD-set is called the CCD-number and is denoted by . In this article, we explore the CCD-number for some specific graphs. Methods: We are finding the upper bound of and the lower bound of . We prove that both the upper and lower bound are equal for the given graphs. Findings: In this article, we obtained the CCD-number for some specific graphs. Novelty: Complementary corona dominating set is a vertex set such that the induced subgraph of the complementary set is isomorphic to corona virus.

Keywords: Dominating Set, Corona Dominating Set, Support And Pendent Vertex, Butterfly Graph, Dumbbell Graph, Coconut Tree Graph, Peacock Head Graph, Sunlet Graph, Spider Graph, Firecracker Graph, Uniform g-ply graph


  1. Mahadevan G, Sugathi V, Sivagnana M. Corona Domination Number of graphs. International conference on mathematical Modelling and Computational Intelligence Techniques. 2021;376:255–265. Available from: http://doi.org/10.1007/978-981-16-6018-4
  2. Praveenkumar L, Mahadevan G, Sivagnanam C. An Investigation of Corona Domination Number for Some Special Graphs and Jahangir Graph. Baghdad Science Journal. 2023;20(1(SI)):294–299. Available from: https://dx.doi.org/10.21123/bsj.2023.8416
  3. Anuthiya S, Mahadevan G, Sivagnanam C. Exploration of CPCD number for power graph. Baghdad Science Journal. 2023;20(1(SI)):0380. Available from: https://dx.doi.org/10.21123/bsj.2023.8423
  4. Shalaan MM, Omran AA. Co-Even Domination Number in Some Graphs. IOP Conference Series: Materials Science and Engineering. 2020;928(4):042015. Available from: https://dx.doi.org/10.1088/1757-899x/928/4/042015
  5. Gipson KL, Kalaiarasan KSJ. Eccentric domination path decomposition of Dumbbell graph. International journal of health sciences. 2022;6(S2):2855–2860. Available from: https://doi.org/10.53730/ijhs.v6nS2.5797
  6. Maheswari V, Kiruthika NHA, Nagarajan A. On 2-Domination Number of Some Graphs. Journal of Physics: Conference Series. 2021;1947(1):012001. Available from: https://dx.doi.org/10.1088/1742-6596/1947/1/012001
  7. Vijayalekshmi A, Prabha AE. Introduction of color class dominating sets in graphs. Malaya Journal of Matematik. 2020;8(4):2186–2189. Available from: https://dx.doi.org/10.26637/mjm0804/0146
  8. Varghese S, Varghese S, Vijayakumar A. Power domination in Mycielskian of spiders. AKCE International Journal of Graphs and Combinatorics. 2022;19(2):154–158. Available from: https://dx.doi.org/10.1080/09728600.2022.2082900
  9. Vijayalekshmi, Niju. Dominator color class dominating sets on fire cracker, gear and flower graphs. Malaya Journal of Matematik. 9(1):1043–1046. Available from: https://doi.org/10.26637/MJM0901/0183


© 2024 Mahadevan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.