• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 128
• PDF 51

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: Special Issue 1, Pages: 144-148

Original Article

## Exploration of CCD-Number for Some Specific Graphs

Received Date:29 August 2023, Accepted Date:05 March 2024, Published Date:31 May 2024

## Abstract

Objectives: A dominating set S of a graph G is said to be a complementary corona dominating set (CCD-set) if every vertex in is either a pendent vertex or a support vertex. The smallest cardinality of a CCD-set is called the CCD-number and is denoted by . In this article, we explore the CCD-number for some specific graphs. Methods: We are finding the upper bound of and the lower bound of . We prove that both the upper and lower bound are equal for the given graphs. Findings: In this article, we obtained the CCD-number for some specific graphs. Novelty: Complementary corona dominating set is a vertex set such that the induced subgraph of the complementary set is isomorphic to corona virus.

Keywords: Dominating Set, Corona Dominating Set, Support And Pendent Vertex, Butterfly Graph, Dumbbell Graph, Coconut Tree Graph, Peacock Head Graph, Sunlet Graph, Spider Graph, Firecracker Graph, Uniform g-ply graph

## References

1. Mahadevan G, Sugathi V, Sivagnana M. Corona Domination Number of graphs. International conference on mathematical Modelling and Computational Intelligence Techniques. 2021;376:255–265. Available from: http://doi.org/10.1007/978-981-16-6018-4
2. Praveenkumar L, Mahadevan G, Sivagnanam C. An Investigation of Corona Domination Number for Some Special Graphs and Jahangir Graph. Baghdad Science Journal. 2023;20(1(SI)):294–299. Available from: https://dx.doi.org/10.21123/bsj.2023.8416
3. Anuthiya S, Mahadevan G, Sivagnanam C. Exploration of CPCD number for power graph. Baghdad Science Journal. 2023;20(1(SI)):0380. Available from: https://dx.doi.org/10.21123/bsj.2023.8423
4. Shalaan MM, Omran AA. Co-Even Domination Number in Some Graphs. IOP Conference Series: Materials Science and Engineering. 2020;928(4):042015. Available from: https://dx.doi.org/10.1088/1757-899x/928/4/042015
5. Gipson KL, Kalaiarasan KSJ. Eccentric domination path decomposition of Dumbbell graph. International journal of health sciences. 2022;6(S2):2855–2860. Available from: https://doi.org/10.53730/ijhs.v6nS2.5797
6. Maheswari V, Kiruthika NHA, Nagarajan A. On 2-Domination Number of Some Graphs. Journal of Physics: Conference Series. 2021;1947(1):012001. Available from: https://dx.doi.org/10.1088/1742-6596/1947/1/012001
7. Vijayalekshmi A, Prabha AE. Introduction of color class dominating sets in graphs. Malaya Journal of Matematik. 2020;8(4):2186–2189. Available from: https://dx.doi.org/10.26637/mjm0804/0146
8. Varghese S, Varghese S, Vijayakumar A. Power domination in Mycielskian of spiders. AKCE International Journal of Graphs and Combinatorics. 2022;19(2):154–158. Available from: https://dx.doi.org/10.1080/09728600.2022.2082900
9. Vijayalekshmi, Niju. Dominator color class dominating sets on fire cracker, gear and flower graphs. Malaya Journal of Matematik. 9(1):1043–1046. Available from: https://doi.org/10.26637/MJM0901/0183