• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 47, Pages: 2680-2689

Original Article

Extraction and Characterization of Bismarck Palm Fibres

Received Date:29 September 2022, Accepted Date:28 November 2022, Published Date:24 December 2022

Abstract

Objectives: A novel natural cellulose bismarck palm fibre (BPF) has been discovered and extracted from the leaf stalk of its tree. Physical, chemical, mechanical, and thermal characterizations have been conducted in this current study. Methods: A water retting method was employed for the extraction of BPFs. The diameter of BPF was assessed using an optical microscope image analyzer. A single fibre tensile test method was employed to calculate the tensile strength of BPF. The thermal behaviour of BPF was evaluated using thermo gravimetric analysis (TGA). A scanning electron microscope was utilized to evaluate the surface morphological structure of the BPF. Findings: The BPF has a fibre fineness of 819 denier, a mean diameter of 0.3636 mm, a density of 0.98 g/cc, cellulose content of 70.71%, hemi cellulose of 34.89%, lignin of 12.88%, wax of 0.30%, ash of 2.13 %, moisture of 10.80 %, pectin of 3.08 %, a mean breaking tensile strength of 904 MPa, mean breaking elongation of 6.4 %, and Young’s modulus of 28.6 GPa, respectively. It is evident that the thermal analysis of BPF was thermally sustainable up to 268 ◦C. The results ensure that the BPF is the anticipated reinforcement of fibre-reinforced composite materials. SEM images revealed that cross section of BPF sample and rugged surface along the length of the fibre. Novelty: The higher cellulose percentage content of BPF samples has significantly shown better mechanical behaviour and thermal stability. This characterization evidenced that it is an outstanding alternative natural cellulose fibre for Eleusine indica grass fibres, Saccharum Bengalense fibres, Leucas Aspera fibres, Catharanthus roseus fibres, and Tridax procumbens fibres and also for synthetic fibres.

Keywords: Bismarck palm fibre; Natural cellulose fibre; Extraction; Characterization; Tensile strength

References

  1. Kumar S, Manna A, Dang R. A review on applications of natural Fiber-Reinforced composites (NFRCs) Materials Today: Proceedings. 2022;50:1632–1636. Available from: https://doi.org/10.1016/j.matpr. 2021.09.131.
  2. Sathish S, Prabhu L, Gokulkumar S, Karthi N, Balaji D, Vigneshkumar N. Extraction, Treatment and Applications of Bio Fiber CompositesA Critical Review. Composite and Composite Coatings. 2022;36:1–22. Available from: https://doi.org/10.1201/9781003109723-1
  3. Sathish S, Prabhu L, Gokulkumar S, Karthi N, Balaji D, Vigneshkumar N. Extraction, Treatment and Applications of Bio Fiber CompositesA Critical Review. Composite and Composite Coatings. 2022;36:1–22. Available from: https://doi.org/10.1515/ipp-2020-4004
  4. Moshi AAM, Ravindran D, Bharathi SRS, Indran S, Saravanakumar SS, Liu Y. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree. International Journal of Biological Macromolecules. 2020;142:212–221. Available from: https://doi.org/10.1016/j.ijbiomac.2019.09.094
  5. Raja K, Prabu B, Ganeshan P, Sekar VSC, Nagarajaganesh BS. Characterization Studies of Natural Cellulosic Fibers Extracted from Shwetark Stem. Journal of Natural Fibers. 2021;18(11):1934–1945. Available from: https://doi.org/10.1080/15440478.2019.1710650
  6. Vinod A, Vijay R, Singaravelu DL, Khan A, Sanjay MR, Siengchin S, et al. Effect of alkali treatment on performance characterization of Ziziphus mauritiana fiber and its epoxy composites. Journal of Industrial Textiles. 2022;51:2444. Available from: https://doi.org/10.1177/1528083720942614
  7. Vijay R, Vinod A, Singaravelu DL, Sanjay MR, Siengchin S. Characterization of chemical treated and untreated natural fibers from Pennisetum orientale grass- A potential reinforcement for lightweight polymeric applications. International Journal of Lightweight Materials and Manufacture. 2021;4(1):43–49. Available from: https://doi.org/10.1016/j.ijlmm.2020.06.008
  8. Totong T, Wardiningsih W, Al-Ayyuby M, Wanti R, Rudy R. Extraction and Characterization of Natural Fiber from Furcraea Foetida Leaves as an Alternative Material for Textile Applications. Journal of Natural Fibers. 2022;19(13):6044–6055. Available from: https://doi.org/10.1080/15440478.2021.1904477
  9. Asyraf MRM, Syamsir A, Supian ABM, Usman F, Ilyas RA, Nurazzi NM, et al. Sugar Palm Fibre-Reinforced Polymer Composites: Influence of Chemical Treatments on Its Mechanical Properties. Materials. 2022;15(11):3852. Available from: https://doi.org/10.3390/ma15113852
  10. Liu Y, Xie J, Wu N, Ma Y, Menon C, Tong J. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose. 2019;26(8):4707–4719. Available from: https://doi.org/10.1007/s10570-019-02429-6
  11. Tamanna TA, Belal SA, Shibly MAH, Khan AN. Characterization of a new natural fiber extracted from Corypha taliera fruit. Scientific Reports. 2021;11(1):1–3. Available from: https://doi.org /10.1038/ s41598-021-87128-8.
  12. Vijay R, Singaravelu DL, Vinod A, Raj IDFP, Sanjay MR, Siengchin S. Characterization of Novel Natural Fiber from Saccharum Bengalense Grass (Sarkanda) Journal of Natural Fibers. 2020;17(12):1739–1747. Available from: https://doi.org/10.1080/15440478.2019.1598914
  13. Khan A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Verpoort F, et al. Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. Journal of Natural Fibers. 2021;18(11):1742–1750. Available from: https://doi.org/10.1080/15440478.2019.1697993
  14. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M, et al. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules. 2019;125:99–108. Available from: https://doi.org/10.1016/j.ijbiomac.2018.12.056
  15. Vijay R, Manoharan S, Arjun S, Vinod A, Singaravelu DL. Characterization of silane-treated and untreated natural fibers from stem of leucas aspera. Journal of Natural Fibers. 2021;18(12):1957–1973. Available from: https://doi.org/10.1080/15440478.2019.1710651
  16. Vinod A, Vijay R, Singaravelu DL, Sanjay MR, Siengchin S, Moure MM. Characterization of untreated and alkali treated natural fibers extracted from the stem of Catharanthus roseus. Materials Research Express. 2019;6(8). Available from: https://doi.org/10.1088/2053-1591/ab22d9
  17. Moghaddam MK, Karimi E. Structural and physical characteristics of the yucca fiber. Journal of Industrial Textiles. 2022;51(5_suppl):8018S–8034S. Available from: https://doi.org/10.1177/1528083720960756
  18. Keskin OY, Dalmis R, Kilic B, Seki G, Koktas Y, S. Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose. 2020;27(17):9963–9974. Available from: https://doi.org/10.1007/s10570-020-03498-8
  19. Dalmis R, Kilic GB, Seki Y, Koktas S, Keskin OY. Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose. 2020;27(15):8621–8634. Available from: https://doi.org/10.1007/s10570-020-03385-2

Copyright

© 2022 Raja & Raju. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.