• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 13, Pages: 1304-1314

Original Article

Flood Risk Assessment for an Irrigation Project in Odissa, India

Received Date:30 October 2023, Accepted Date:04 March 2024, Published Date:22 March 2024

Abstract

Objectives: Flood risk assessment is a fundamental aspect of disaster management, particularly in regions heavily reliant on irrigation infrastructure for agriculture. This study employs advanced hydrological and hydraulic modeling techniques to evaluate flood risk for the Lower Suktel region in Odisha, India. Methods: The methodology integrates Intensity-Duration-Frequency (IDF) curves, Isopluvial maps, and the Hydrologic Engineering Center-River Analysis System (HEC-RAS) to comprehensively analyze flood risk and its implications. Findings: IDF curves further reveal that the design rainfall intensity for a one-hour duration with a 100-year return period is 152 mm/h, aiding in characterizing rainfall intensity for specific return periods. Model simulation identifies the pump house's susceptibility to flooding, with maximum flood depths ranging from 0 to 2 meters. These findings underscore the significance of employing advanced modeling techniques and Isopluvial maps for precise flood risk assessment. Novelty: The novelty of this paper lies in its pioneering effort to introduce a comprehensive flood risk assessment in an area where it has not been previously conducted. The integration of advanced modeling techniques and spatial analysis tools contributes to the novelty of the research, making it a valuable and innovative contribution to the field of flood risk management. Understanding extreme rainfall events, hydraulic behavior, and potential flood depths is imperative for developing effective flood mitigation strategies.

Keywords: Flood risk assessment, Irrigation infrastructure, IDF curves, Hydrological modeling, Hydraulic modeling, GIS

References

  1. Mizutori M, Berryman K, Burkins MB, Erian W, Garonna P, Jahn M, et al. Our World at Risk: Transforming Governance for a Resilient Future. Global Assessment Report on Disaster Risk Reduction. Available from: https://www.undrr.org/gar/gar2022-our-world-risk-gar
  2. Schotten R, Bachmann D. Integrating Critical Infrastructure Networks into Flood Risk Management. Sustainability. 2023;15(6):1–22. Available from: https://doi.org/10.3390/su15065475
  3. Amaratunga D, Anzellini V, Guadagno L, Hagen JS, Komac B, Krausmann E. Regional assessment report on disaster risk reduction 2023 Europe and Central Asia. Europe and Central Asia. Available from: https://epubl.ktu.edu/object/elaba:183253845/183253845.pdf
  4. Sarkar S. Drought and flood dynamics of Godavari basin, India: A geospatial perspective. Arabian Journal of Geosciences. 2022;15(8):1–15. Available from: https://doi.org/10.1007/s12517-022-10041-5
  5. Pörtner HO, Roberts DC, Poloczanska ES, Mintenbeck K, Tignor M, Alegría A, et al. IPCC, 2022: summary for policymakers. In: Climate change 2022: Impacts, adaptation, and vulnerability. (pp. 3-33) Cambridge University Pres. 2022.
  6. Merga BB, Mamo FL, Moisa MB, Tiye FS, Gemeda DO. Assessment of flood risk by using geospatial techniques in Wabi Shebele River Sub-basin, West Hararghe Zone, southeastern Ethiopia. Applied Water Science. 2023;13(11):1–15. Available from: https://doi.org/10.1007/s13201-023-02019-9
  7. Padhan N, Madheswaran S. An integrated assessment of vulnerability to floods in coastal Odisha: a district-level analysis. Natural Hazards. 2023;115(3):2351–2382. Available from: https://doi.org/10.1007/s11069-022-05641-z
  8. Kumar VR, Guganesh S, Kumaresan P. Development of Intensity-Duration-Frequency Curves for Intake Structures in Irrigation Projects. International Journal of Lakes and Rivers. 2023;16(2):95–105. Available from: http://www.ripublication.com/ijlr.htm
  9. Lanciotti S, Ridolfi E, Russo F, Napolitano F. Intensity–Duration–Frequency Curves in a Data-Rich Era: A Review. Water. 2022;14(22):1–33. Available from: https://doi.org/10.3390/w14223705
  10. Hasan HH, Razali SFM, Zaki AZIA, Hamzah FM. Integrated Hydrological-Hydraulic Model for Flood Simulation in Tropical Urban Catchment. Sustainability. 2019;11(23):1–24. Available from: https://doi.org/10.3390/su11236700
  11. Akbari GH, Barati R. Comprehensive analysis of flooding in unmanaged catchments. Proceedings of the Institution of Civil Engineers - Water Management. 2012;165(4):229–238. Available from: https://doi.org/10.1680/wama.10.00036
  12. Akbari GH, Nezhad AH, Barati R. Developing a model for analysis of uncertainties in prediction of floods. Journal of Advanced Research. 2012;3(1):73–79. Available from: https://doi.org/10.1016/j.jare.2011.04.004
  13. Barati R, Rahimi S, Akbari GH. Analysis of dynamic wave model for flood routing in natural rivers. Water Science and Engineering. Water Science and Engineering. 2012;5(3):243–258. Available from: https://doi.org/10.3882/j.issn.1674-2370.2012.03.001
  14. Ramachandran A, Palanivelu K, Mudgal BV, Jeganathan A, Guganesh S, Abinaya B, et al. Climate change impact on fluvial flooding in the Indian sub-basin: A case study on the Adyar sub-basin. PLOS ONE. 2019;14(5):1–24. Available from: https://doi.org/10.1371/journal.pone.0216461
  15. Sahu MK, Shwetha HR, Dwarakish GS. State-of-the-art hydrological models and application of the HEC-HMS model: a review. Modeling Earth Systems and Environment. 2023;9(3):3029–3051. Available from: https://doi.org/10.1007/s40808-023-01704-7
  16. Andimuthu R, Kandasamy P, Mudgal BV, Jeganathan A, Balu A, Sankar G. Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city. Scientific Reports. 2019;9(1):1–10. Available from: https://doi.org/10.1038/s41598-019-43859-3
  17. Haeberli W, Oerlemans J, Zemp M. The Future of Alpine Glaciers and Beyond. 2019. Available from: https://doi.org/10.1093/acrefore/9780190228620.013.769
  18. Masson-Delmotte VP, Zhai P, Pirani SL, Connors C, Péan S, Berger N, et al. SPM - Summary for Policymakers. In: Climate Change 2021 – The Physical Science Basis. (pp. 3-31) Cambridge University Press. 2023.
  19. Kumar VR, Guganesh S, Babu DH, Kumaresan P. Flood Modeling: A Comprehensive Review on IDF Curves. International Advanced Research Journal in Science, Engineering and Technology. 2024;11(2):52–56. Available from: https://iarjset.com/wp-content/uploads/2024/03/IARJSET.2024.11207.pdf
  20. Sahu MK, Shwetha HR, Dwarakish GS. State-of-the-art hydrological models and application of the HEC-HMS model: a review. Modeling Earth Systems and Environment. 2023;9(3):3029–3051. Available from: https://doi.org/10.1007/s40808-023-01704-7
  21. Ghimire E, Sharma S, Lamichhane N. Evaluation of one-dimensional and two-dimensional HEC-RAS models to predict flood travel time and inundation area for flood warning system. ISH Journal of Hydraulic Engineering. 2022;28(1):110–126. Available from: https://doi.org/10.1080/09715010.2020.1824621
  22. Atashi V, Barati R, Lim YH. Distributed Muskingum model with a Whale Optimization Algorithm for river flood routing. Journal of Hydroinformatics. 2023;25(6):2210–2222. Available from: https://doi.org/10.2166/hydro.2023.029
  23. Meisam B, Reza B, Emrah D, Gokmen T. Reverse Flood Routing in Rivers Using Linear and Nonlinear Muskingum Models. J Hydrol Eng. 2021;26(6). Available from: https://doi.org/10.1061/(ASCE)HE.1943-5584.0002088

Copyright

© 2024 Kumar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.