• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 44, Pages: 2393-2402

Original Article

Flow and Heat Transfer Analysis MHD Nanofluid due to Convective Stretching Sheet

Received Date:10 May 2022, Accepted Date:13 October 2022, Published Date:30 November 2022

Abstract

Objectives: The study of flow and heat transfer on a permeable stretching sheet of Magnetohydrodynamic nanofluid under the influence of convective boundary condition is presented in this article. Mathematical modeling for the law of conservation of mass, momentum, heat and concentration of nanoparticles is executed. Methods: Governing nonlinear partial differential equations are reduced into nonlinear ordinary differential equations and then shooting method with fourth order Adams-Moulton Method is employed for its solution. Findings: The effects of magnetic parameter (0  M  2), Thermophoresis parameter (0:1  Nt  0:7) Lewis number (1  Le  4), Suction parameter (0  fw  3), Biot number(0:1  Bi  0:7) and Viscous dissipation(0  Ec  4) on axial velocity, temperature and concentration profiles are shown graphically. Numerical results were compared with another numerical approach and an excellent agreement was observed. The solutions under the impacts of different physical governing parameters are illustrated by means of graphs and tables. Effects of viscous dissipation is also discussed. Novelty: Despite the enormous importance and repeated application of nanofluids in industry and science, no attempt has been made to investigate the viscous dissipation effect on heat transfer with a permeable linear stretch sheet.

Keywords: MHD; Nanofluid; Stretching Sheet; Viscous dissipation; Shooting technique; Adams-Moulton Method

References

  1. Crane LJ. Flow past a stretching plate. Journal of Applied Mathematics and Physics . 1970;21(4):645–647. Available from: https://doi.org/10.1007/BF01587695
  2. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 1995;66:99–105.
  3. Buongiorno J, Venerus DC, Prabhat N, Mckrell T, Townsend J, Christianson R, et al. A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics. 2009;106(9):094312. Available from: https://doi.org/10.1063/1.3245330
  4. Anusha T, Mahabaleshwar US, Sheikhnejad Y. An MHD of Nanofluid Flow Over a Porous Stretching/Shrinking Plate with Mass Transpiration and Brinkman Ratio. Transport in Porous Media. 2021;142(1-2):333–352. Available from: https://doi:10.1007/s11242-021-01695-y
  5. Ashraf A, Zhang Z, Saeed T, Zeb H, Munir T. Convective Heat Transfer Analysis for Aluminum Oxide (Al2O3)- and Ferro (Fe3O4)-Based Nano-Fluid over a Curved Stretching Sheet. Nanomaterials. 2022;12(7):1152. Available from: https://doi:10.3390/nano12071152
  6. Muntazir RM, Mushtaq M, Shahzadi S, Jabeen K. MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2022;236(1):137–152. Available from: https://doi.org/10.1177/09544062211023094
  7. Isah BY, Abdullahi B, Seini IY. On transient MHD heat transfer within a radiative porous channel due to convective boundary conditions. Heat Transfer. 2022;51(6):5140–5158. Available from: https://doi.org/10.1002/htj.22540
  8. Vishwambhar S, Patil, Pooja P, Amar BH&, Patil. MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction. International Journal of Modelling and Simulation. 2022. Available from: https://doi.org/10.1080/02286203.2022.2062166
  9. Govardhan K, Narender G, Sarma GS. Heat and Mass transfer in MHD Nanofluid over a Stretching Surface along with Viscous Dissipation Effect. International Journal of Mathematical, Engineering and Management Sciences. 2020;5(2):343–352. Available from: https://doi:10.33889/IJMEMS.2020.5.2.028
  10. Thirupathi G, Govardhan K, Narender G. Viscous dissipation and radiative effects in the Magneto-micropolar fluid with partial slip and convective boundary condition. Surveys in Mathematics and its Applications. 2022;17:99–111.
  11. Narender G, Sreedhar G, Sarma K, Govardhan. Heat and Mass Transfer of a nanofluid over a stretching sheet with viscous dissipation effect. Journal of Heat Mass Transfer Research. 2019;6(2):117–124. Available from: https://doi: 10.22075/JHMTR.2019.15419.1214
  12. Govardhan K, Narender G, Sarma GS. Viscous dissipation and chemical reaction effects on MHD Casson nanofluid over a stretching sheet. Malaysian Journal of Fundamental and Applied Sciences. 2019;15(4):585–592. Available from: https://doi.org/10.11113/mjfas.v15n4.1256
  13. Ajam H, Jafari SS, Freidoonimehr N. Analytical approximation of MHD nano-fluid flow induced by a stretching permeable surface using Buongiorno’s model. Ain Shams Engineering Journal. 2018;9(4):525–536. Available from: https://doi.org/10.1016/j.asej.2016.03.006

Copyright

© 2022 Srisailam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.