• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 8, Pages: 760-772

Original Article

Gamma Ray Spectroscopy Analysis of Sediments of Coastal Areas in Ennore, Tamil Nadu

Received Date:29 September 2023, Accepted Date:28 December 2023, Published Date:20 February 2024


Objectives: This research focuses on the determination of the natural radionuclides radium, thorium, and potassium in the twenty-six sediment samples collected at the sea, beach, and creek regions of Ennore Port. Methods: The activity concentrations of 226Ra, 232Th, and 40K were determined using gamma ray spectrometry with a high-purity germanium (HPGe) detector. Findings: The average activity concentrations of 226Ra, 232Th, and 40K were in the descending order of 40K (397.58 Bq kg-1) > 232Th (65.83 Bq kg-1) > 226Ra (18.28 Bq kg-1). The estimated average values of radiological parameters such as radium equivalent activity (143.04 Bq kg-1), absorbed dose rate (64.91 nGy h-1), annual effective dose equivalent (0.32 mSv y-1), and external hazard index (0.39) were lower than the respective world average values, reported by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR, 2000). Moreover, the representative level index and annual gonadal dose equivalent were slightly higher than the world average value. Hence, this research proved that the study area is radiologically safe for humans and the environment. Novelty: A location and sample collection-based novelty is approached to carried out the work. Sea sediments were also collected along with samples from creek and beach regions in order to examine the dispersion of natural radionuclides from land to marine environments. The samples from the beach and creek regions were collected using a Peterson grab sampler. Especially in the sea region, the samples were collected using a Van Veen grab sampler at a depth of 4 m and a distance of 10 m parallel to the shoreline.

Keywords: Natural radioactivity, Sediment, Ennore, Gamma ray spectrometry, HPGe detector, Radiological parameters


  1. Odongo WOG, Hashim N, Chege MW. Gamma Ray Spectrometric Analysis of Sand Samples from Selected Beaches along Kenyan Coastline. The Scientific World Journal. 2021;2021:1–8. Available from: https://doi.org/10.1155/2021/6621645
  2. Patni K, Pande AP, Jindal MK, Joshi T. Gamma radiation dose rate in high-altitude areas in the Bageshwar, Champawat and Pithoragarh districts of Uttarakhand, India. Environmental Geochemistry and Health. 2023;45(11):8119–8133. Available from: https://doi.org/10.1007/s10653-023-01714-5
  3. Bou-Rabee F, Bem H. Natural radioactivity in building materials utilized in the State of Kuwait. Journal of Radioanalytical and Nuclear Chemistry Letters. 1996;213(2):143–149. Available from: https://doi.org/10.1007/BF02165246
  4. Kavasara M, Vinutha PR, Kaliprasad CS, Narayana Y. Studies on the dependence of natural radioactivity on clay minerals of soils in Davanagere district of Karnataka, India. Journal of Radioanalytical and Nuclear Chemistry. 2021;330(3):1461–1471. Available from: https://doi.org/10.1007/s10967-021-07920-8
  5. Health Effects of Exposure to Radon BEIR VI. (pp. 1-592) Washington (DC), USA. National Academies Press. 1999.
  6. Devanesan E, Chandramohan J, Senthilkumar G, Harikrishnan N, Gandhi MS, Kolekar SS, et al. Natural radioactivity concentrations and dose assessment in coastal sediments along the East Coast of Tamilnadu, India with statistical approach. Acta Ecologica Sinica. 2020;40(5):353–362. Available from: https://doi.org/10.1016/j.chnaes.2019.06.001
  7. Bharath KM, Natesan U, Chandrasekaran S, Srinivasalu S, Abdelrahman K, Abu-Alam T, et al. Geochemometrics of primordial radionuclides and their potential radiological risk in coastal sediments of Southeast Coast of India. Journal of Radiation Research and Applied Sciences. 2023;16(1):1–18. Available from: https://doi.org/10.1016/j.jrras.2023.100525
  8. Periáñez R, Abascal-Ruíz U, López-Gutiérrez JM, Villa-Alfageme M. Sediments as sinks and sources of marine radionuclides: Implications for their use as ocean tracers. Marine Pollution Bulletin. 2023;194(Part A):1–7. Available from: https://doi.org/10.1016/j.marpolbul.2023.115316
  9. Santhanabharathi B, Pradhoshini KP, Ahmed MS, Priyadharshini M, Parveen MHS, Alam LH, et al. Source, fate and transfer of primordial radionuclides as potential contaminants in environmental matrices of high and low background radiation areas – a critical review. International Journal of Environmental Analytical Chemistry. 2023;p. 1–27. Available from: https://doi.org/10.1080/03067319.2023.2277891
  10. Aryanti CA, Suseno H, Muslim M, Prihatiningsih WR, Yahya MN. Concentration of Natural Radionuclide and Potential Radiological Dose of 226Ra to Marine Organism in Tanjung Awar-Awar, Tuban Coal-Fired Power Plant. Jurnal Segara. 2021;17(3):195–206. Available from: http://dx.doi.org/10.15578/segara.v17i3.10555
  11. Gopal V, Kalpana G, Nethaji S, Jayaprakash M. Geochemical study of core sediments from Ennore Creek, North of Chennai, Tamil Nadu, India. Arabian Journal of Geosciences. 2016;9:1–4. Available from: https://doi.org/10.1007/s12517-015-2140-9
  12. Siraz MMM, Rakib MDA, Alam MS, Mahmud JA, Rashid MB, Khandaker MU, et al. Assessment of radionuclides from coal-fired brick kilns on the outskirts of Dhaka city and the consequent hazards on human health and the environment. Nuclear Engineering and Technology. 2023;55(8):2802–2811. Available from: https://doi.org/10.1016/j.net.2023.04.045
  13. Musthafa MS, Krishnamoorthy R. Estimation of 210Po and 210Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India. Environmental Monitoring and Assessment. 2012;184(10):6253–6260. Available from: https://doi.org/10.1007/s10661-011-2417-8
  14. Pandian PK, Ramesh S, Murthy MV, Ramachandran S, Thayumanavan S. Shoreline changes and near shore processes along Ennore coast, east coast of South India. Journal of Coastal Research. 2004;20(3):828–845. Available from: http://www.jstor.org/stable/4299341
  15. Jayaprakash M, Kumar RS, Giridharan L, Sujitha SB, Sarkar SK, Jonathan MP. Bioaccumulation of metals in fish species from water and sediments in macrotidal Ennore creek, Chennai, SE coast of India: A metropolitan city effect. Ecotoxicology and Environmental Safety. 2015;120:243–255. Available from: https://doi.org/10.1016/j.ecoenv.2015.05.042
  16. Bharath M, Natesan U, Chandrasekaran S, Srinivasalu S. Determination of natural radionuclides and radioactive minerals in urban coastal zone of South India using Geospatial approach. Journal of Radioanalytical and Nuclear Chemistry. 2022;331(5):2005–2018. Available from: https://doi.org/10.1007/s10967-022-08284-3
  17. Shaaibi MA, Ali J, Tsikouras BJ, Masri Z. Environmental radioactivity assessment of the Brunei Darussalam coastline of the South China Sea. Environmental Pollution. 2023;323:1–9. Available from: https://doi.org/10.1016/j.envpol.2023.121288
  18. Ehsan MS, Rahman MF, Tabassum N, Prodhan MMH, Pervin S, Siraz MM, et al. The Activity Concentration of Radionuclides (226Ra, 232Th and 40K) in Soil Samples and Associated Health Hazards in Natore, Kushtia and Pabna District of Bangladesh. Journal of Bangladesh Academy of Sciences. 2019;43(2):169–180. Available from: https://doi.org/10.3329/jbas.v43i2.45738
  19. Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly. Available from: https://digitallibrary.un.org/record/422833/files/UNSCEAR_2000_Report_Vo1.pdf
  20. Yadav M, Jindal MK, Bossew P, Ramola RC. Geological control of terrestrial background radiation in Garhwal Himalaya, India. Environmental Geochemistry and Health. 2023;45(11):8379–8401. Available from: https://doi.org/10.1007/s10653-023-01729-y
  21. Onjefu SA, Taole SH, Kgabi NA, Grant C, Antoine J. Assessment of natural radionuclide distribution in shore sediment samples collected from the North Dune beach, Henties Bay, Namibia. Journal of Radiation Research and Applied Sciences. 2017;10(4):301–306. Available from: https://doi.org/10.1016/j.jrras.2017.07.003
  22. Ramasamy V, Sundarrajan M, Paramasivam K, Suresh G. Spatial and depth wise characterization of radionuclides and minerals in various beach sediments from high background radiation area, Kerala, India. Applied Radiation and Isotopes. 2015;95:159–168. Available from: https://doi.org/10.1016/j.apradiso.2014.10.023
  23. Putra DIP, Prihatiningsih WR, Makmur M, Yahya MN, Priasetyono Y, Untara. Distribution of some natural and anthropogenic radionuclides in the sediments and seawater along the coastal areas of North Sulawesi. In: 2nd International Conference on Fisheries and Marine , IOP Conference Series: Earth and Environmental Science. (Vol. 890, pp. 012005) IOP Publishing. 2021.
  24. Aziz A, Attia T, Hanafi M. Radiological Impact and Environmental Monitoring of Gamma Radiations Along the Public Beach of Port Said, Egypt. Pure and Applied Geophysics. 2020;177(6):2871–2876. Available from: https://doi.org/10.1007/s00024-019-02398-8
  25. As-Subaihi FA, Salem TAA, Ahmed MI. Assessment of natural radioactivity level and associated radiological hazards in marine sediment samples collected from Abyan beach, Gulf of Aden, Yemen. Electronic Journal of University of Aden for Basic and Applied Sciences. 2023;4(1):18–30. Available from: https://doi.org/10.47372/ejua-ba.2023.1.217
  26. Akuo-Ko EO, Adelikhah M, Amponsem E, Csordás A, Kovács T. Radiological assessment in beach sediment of coastline, Ghana. Heliyon. 2023;9(6):1–14. Available from: https://doi.org/10.1016/j.heliyon.2023.e16690
  27. Zakaly HMH, Uosif MAM, Issa SAM, Tekin HO, Madkour H, Tammam M, et al. An extended assessment of natural radioactivity in the sediments of the mid-region of the Egyptian Red Sea coast. Marine Pollution Bulletin. 2021;171:112658. Available from: https://doi.org/10.1016/j.marpolbul.2021.112658
  28. Thangam V, Rajalakshmi A, Chandrasekaran A, Jananee B. Measurement of natural radioactivity in river sediments of Thamirabarani, Tamilnadu, India using gamma ray spectroscopic technique. International Journal of Environmental Analytical Chemistry. 2022;102(2):422–433. Available from: https://doi.org/10.1080/03067319.2020.1722815
  29. Yadav M, Jindal MK, Ramola RC. Study of Radionuclides in Rocks Samples from Ukhimath Area and Its Correlation with Soil and Water Data. Chemistry Africa. 2023;6(4):2165–2173. Available from: https://doi.org/10.1007/s42250-023-00635-1
  30. Sathish V, Chandrasekaran A, Manigandan S, Tamilarasi A, Thangam V. Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu. Journal of Radioanalytical and Nuclear Chemistry. 2022;331(3):1495–1505. Available from: https://doi.org/10.1007/s10967-022-08207-2
  31. Enhanced Radioactivity of Building Materials (96). Finland. European Commission. Directorate-General for Environment, Nuclear Safety, Civil Protection, STUK, Nuclear Safety Authority, & Säteilyturvakeskus . 1999.
  32. Jindal MK, Sar SK, Baghel T, Wadhwa DS. Statistical Study of the Factors Affecting Outdoor Gamma Dose Rate and Impact of Season. Journal of the Geological Society of India. 2021;97(1):85–93. Available from: https://doi.org/10.1007/s12594-021-1629-y


© 2024 Rajendiran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.