• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 42, Pages: 3126-3132

Original Article

Image-based Tomato Disease Identification Using Convolutional Neural Network

Received Date:24 June 2021, Accepted Date:12 November 2021, Published Date:09 December 2021


Objectives: Agriculture is the main food source and farmers are challenging a great production loss annually due to plant leaf disease. Early identification of tomato plant diseases help farmers to take preventive measure to reduce production loss. As a result, to recognize tomato plant leaf diseases in its early stage, a deep learning approach is discussed. Methods: For tomato disease identification and classification a convolutional neural network model is used in this study. CNN is capable for fine-grained disease identification as a technique which avoids feature engineering and threshold segmentation through automatic feature extraction. Findings: In this experiment, we have used 22,930 leaf image dataset are taken from plant village dataset, some are collected from Awash Melkasa tomato cultivation area in various seasons. Image processing is conducted along with pixel with operations it enhance the image data followed with feature extraction of patterns of collected leaves to detect the leaf diseases. The extracted patterns are fit into the neural network model with 100 epochs, 80/20 splitting ratio, and 0.001 learning rate. Hence the tomato disease network model achieves an overall 98.3% accuracy performance. Novelty: In order to detect tomato leave disease, we performed image processing with pixel-wise operation to enhance the leaf images that can be followed by feature extraction to classify patterns. We extend, and adopt neural network using local images collected under challenging environment datasets and optimization is performed in Adam optimizer with categorical entropy as loss function.

Keywords: convolutional neural network; deep learning; leaf disease identification; ReLu


  1. Yeshiwas Y, Belew D, Tolessa K. Tomato (Solanum lycopersicum L.) Yield and Fruit Quality Attributes as Affected by Varieties and Growth Conditions. World Journal Agricultural Sciences. 2016;12(6):404–408. doi: 10.5829/idosi.wjas.2016.404.408
  2. Hiary HA, Ahmad SB, Reyalat M, Braik M, ALRahamneh Z. Fast and Accurate Detection and Classification of Plant Diseases. International Journal of Computer Applications. 2011;17(1):31–38. Available from: https://dx.doi.org/10.5120/2183-2754
  3. Agarwal M, Singh A, Arjaria S, Sinha A, Gupta S. ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network. Procedia Computer Science. 2020;167:293–301. Available from: https://dx.doi.org/10.1016/j.procs.2020.03.225
  4. Sun X, Mu S, Xu Y, Cao Z, Su T. Image Recognition of Tea Leaf Diseases Based on Convolutional Neural Network. 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). 2018;p. 304–309. doi: 10.1109/SPAC46244.2018.8965555
  5. Sembiring A, Away Y, Arnia F, Muharar R. Development of Concise Convolutional Neural Network for Tomato Plant Disease Classification Based on Leaf Images. Journal of Physics: Conference Series. 2021;1845(1):012009. Available from: https://dx.doi.org/10.1088/1742-6596/1845/1/012009
  6. Hassan SM, Maji A, Jasiński M, Leonowicz Z. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. 2021;10(12):1388. doi: 10.3390/electronics10121388
  7. Atole RR, Park D. A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies. International Journal of Advanced Computer Science and Applications (IJACSA). 2018;9(1):67–70. Available from: 10.14569/IJACSA.2018.090109
  8. Mohanty SP, Hughes DP, Salathé M. Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science. 2016;7. Available from: https://dx.doi.org/10.3389/fpls.2016.01419
  9. Dyrmann M, Karstoft H, Midtiby HS. Plant species classification using deep convolutional neural network. Biosystems Engineering. 2016;151:72–80. Available from: https://dx.doi.org/10.1016/j.biosystemseng.2016.08.024
  10. Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S, Ocimati W, et al. AI-powered banana diseases and pest detection. Plant Methods. 2019;15(1). Available from: https://dx.doi.org/10.1186/s13007-019-0475-z
  11. Guo Y, Zhang J, Yin C, Hu X, Zou Y, Xue Z, et al. Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming. Discrete Dynamics in Nature and Society. 2020;2020:1–11. Available from: https://dx.doi.org/10.1155/2020/2479172
  12. Kaushik R, Kumar S, Pooling M. Image Segmentation Using Convolutional Neural Network. International Journal of Scientific & Technology Research. 2019;8(11). Available from: www.ijstr.org.
  13. Chowdhury MEH, Rahman T, Khandakar A, Ayari MA, Khan AU, Khan MS, et al. Automatic and Reliable Leaf Disease Detection Using Deep Learning Techniques. AgriEngineering. 2021;3(2):294–312. Available from: https://dx.doi.org/10.3390/agriengineering3020020
  14. Agarwal M, Singh A, Arjaria S, Sinha A, Gupta S. ToLeD : Tomato Tomato Leaf Leaf Disease Disease Detection Detection using using Convolution Convolution Neural Neural Network Network. Procedia Computer Science. 2019;167:293–301. Available from: https://doi.org/10.1016/j.procs.2020.03.225
  15. Ahmad I, Hamid M, Yousaf S, Shah ST, Ahmad MO. Optimizing Pretrained Convolutional Neural Networks for Tomato Leaf Disease Detection. Complexity. 2020;2020:1–6. Available from: https://dx.doi.org/10.1155/2020/8812019
  16. Wang Q, Qi F, Sun M, Qu J, Xue J. Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep Convolutional Neural Networks and Object Detection Techniques. Computational Intelligence and Neuroscience. 2019;2019:1–15. Available from: https://dx.doi.org/10.1155/2019/9142753


© 2021 Gardie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.