• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 36, Pages: 3725-3737

Original Article

Implementation of scalable and energy efficient WSN platform for IoT applications

Received Date:29 July 2020, Accepted Date:19 September 2020, Published Date:06 October 2020


Background/Objectives: The major problems in WSN are the short-range of RF signals and the short life of batteries of each node. We develop a platform that uses the MAC protocols to avoid collisions between packets and decrease the data collection time. To overcome the energy challenges, the sleep modes, idle consumption, and others solutions provided to extend the node’s life period Methods/Statistical analysis: Based on the IoT applications, we configured different hardware (HW) to collect data from temperature,relative humidity (RH), and carbon dioxide (CO2), and access to this data, and these devices remotely through the internet. For this, the nodes, transceivers, batteries, and the gateway (GW) are analyzed. Additionally, it is configured with the frequency band or the radio frequency (RF) sensitivity to improve the performance of the system developed. Findings: Sensors, repeaters, and the GW were configured to work with each other and be accessed through the internet. The energy consumed on the experiment carried out has been reduced by more than 80% choosing LP modes and enable sleep algorithms over the Node’s OS where the time was also reduced around 80% in comparison with the available options. By set MQTT and SSH services, this application is scalable to be integrated with cloud services and be accessed by remote computers. Novelty/Applications: Finally, the lifelong period of nodes augmented drastically, more range between nodes is achieved and highly reliable data collected with low power consumption.

Keywords: WSN; sensors; IoT; CO 2; temperature; relative humidity (RH)


  1. Lazarescu TM. Design of a WSN Platform for Long-Term Environmental Monitoring for IoT Applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2013;3(1):45–54. Available from: https://dx.doi.org/10.1109/jetcas.2013.2243032
  2. Karl H, Willig A. Protocols and Architectures for Wireless Sensor Networks. . (pp. 1-497) Chichester, UK. John Wiley & Sons. 2005.
  3. Haseeb K, Islam N, Almogren A, Din IU. Intrusion Prevention Framework for Secure Routing in WSN-Based Mobile Internet of Things. IEEE Access. 2019;7:185496–185505. Available from: https://dx.doi.org/10.1109/access.2019.2960633
  4. Haseeb K, Almogren A, Islam N, Din IU, Jan Z. An Energy-Efficient and Secure Routing Protocol for Intrusion Avoidance in IoT-Based WSN. Energies. 2019;12(21). Available from: https://dx.doi.org/10.3390/en12214174
  5. Saba T, Haseeb K, Din IU, Almogren A, Altameem A, Fati SM. EGCIR: Energy-Aware Graph Clustering and Intelligent Routing Using Supervised System in Wireless Sensor Networks. Energies. 2020;13(16). Available from: https://dx.doi.org/10.3390/en13164072
  6. Abella CS, Bonina S, Cucuccio A, D'Angelo S, Giustolisi G, Grasso AD, et al. Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/Office Automation. IEEE Sensors Journal. 2019;19(9):3501–3512. Available from: https://dx.doi.org/10.1109/jsen.2019.2892604
  7. BenSaleh MS, Saida R, Kacem YH, Abid M. Wireless Sensor Network Design Methodologies: A Survey. Journal of Sensors. 2020;2020:1–13. Available from: https://dx.doi.org/10.1155/2020/9592836
  8. Li X, Zhu L, Chu X, Fu H. Edge Computing-Enabled Wireless Sensor Networks for Multiple Data Collection Tasks in Smart Agriculture. Journal of Sensors. 2020;2020:1–9. Available from: http://doi.org/10.1155/2020/4398061
  9. Ullah U, Khan A, Zareei M, Ali I, Khattak HA, Din IU. Energy-Effective Cooperative and Reliable Delivery Routing Protocols for Underwater Wireless Sensor Networks. Energies. 2019;12(13):2630. Available from: https://dx.doi.org/10.3390/en12132630
  10. Bali MMEI. Perguruan Tinggi Islam Berbasis Pondok Pesantren. AL-TANZIM : JURNAL MANAJEMEN PENDIDIKAN ISLAM. 2017;1:1–14. Available from: https://dx.doi.org/10.33650/al-tanzim.v1i2.109
  11. Seflova P, Sulc V, Pos J, Spinar R. IQRF wireless technology utilizing IQMESH protocol. 35th International Conference on Telecommunications and Signal Processing. 2012;p. 101–105. Available from: http://doi.org/10.1109/TSP.2012.6256261
  12. Skovranek J, Pies M, Hajovsky R. Use of the IQRF and Node-RED technology for control and visualization in an IQMESH network. IFAC-PapersOnLine. 2018;51:295–300. Available from: https://dx.doi.org/10.1016/j.ifacol.2018.07.169
  13. Franco IB, Derbyshire E, Science TS. Franco IB, Chatterji T, Derbyshire E, Tracey J., eds. Actioning the Global Goals for Local Impact. Singapore. Science for Sustainable Societies..


© 2020 Uqaili et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.