• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 13, Pages: 1014-1020

Original Article

Improved Facial Identification Using Adaptive Neuro-Fuzzy Logic Inference System

Received Date:11 September 2022, Accepted Date:28 February 2023, Published Date:04 April 2023


Objectives: To suggest an efficient pose invariant face recognition system (PCA-ANFIS) based on PCA and ANFIS. Methods: Using a dual-tree complex wavelet transform technique, face image improvement is obtained. ORL and YALE B data sets are used in this process. To train and test the network to recognize the person, two sets of photos were used. The system will return recognized if the test image matches one of the image’s training sets. The system will report not recognized if the test image does not match one of the image’s training sets. Accuracy, specificity, sensitivity, precision, and recall are the criteria taken into account. The suggested approach is then evaluated and compared to other known, gold standard facial recognition algorithms, including PCA, WP&LDA, GOBER WAVELET, SVM, and Bayesian Classifier methods. Findings: The study results indicated that the image accuracy, specificity, sensitivity, precision, and recall are enhanced toa level of 90, 85, 95, 86, and 95 per cent respectively when compared with the test results of other known gold standard facial recognition algorithms viz., PCA, WP &LDA, GOBET WAVELET, SVM and Bayesian Classifier approaches by which it can be concluded that it is an efficient approach for facial identification. Novelty : Both the feature extraction strategy and the classification approach play a strong emphasis on these factors. Principal component analysis is used for feature extraction, while an Adaptive Neuro Fuzzy Inference System is used for classification. The study proposed a novel neuro-fuzzy system-based face recognition method that is proposed in this study correctly that identifies the input face photos with a higher recognition rate Compared to the existing reports.

Keywords: Facial Recognition; Image Processing; Biometric Technology; Facial Image Enhancement; Accuracy; Sensitivity


  1. Mabdeh AN, Al-Fugara AK, Khedher KM, Mabdeh MN, Al-Shabeeb AR, Al-Adamat R. Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference System-Based Evolutionary Algorithms. Sustainability. 2022;14(15):9446. Available from: https://doi.org/10.3390/su14159446
  2. Abdullah HA. Neuro-fuzzy inference system based face recognition using feature extraction. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2020;18(1):427. Available from: https://doi.org/10.12928/TELKOMNIKA.v18i1.12992
  3. Chopra S, Dhiman G, Sharma A, Shabaz M, Shukla P, Arora M. Taxonomy of Adaptive Neuro-Fuzzy Inference System in Modern Engineering Sciences. Computational Intelligence and Neuroscience. 2021;2021:1–14. Available from: https://doi.org/10.1155/2021/6455592
  4. Chourasia U, Silakari S. Adaptive Neuro Fuzzy Interference and PNN Memory Based Grey Wolf Optimization Algorithm for Optimal Load Balancing. Wireless Personal Communications. 2021;119(4):3293–3318. Available from: https://doi.org/10.1007/s11277-021-08400-8
  5. Chrysos GG, Moschoglou S, Bouritsas G, Panagakis Y, Deng J, Zafeiriou S. P–nets: Deep Polynomial Neural Networks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020;p. 7325–7335. Available from: https://ieeexplore.ieee.org/document/9353253
  6. Ghorbanzadeh O, Blaschke T, Aryal J, Gholaminia K. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Journal of Spatial Science. 2020;65(3):401–418. Available from: https://www.tandfonline.com/doi/full/10.1080/14498596.2018.1505564
  7. Devi TD, Subramani A, Anitha P. Modified adaptive neuro-fuzzy inference system-based load balancing for a virtual machine with security in a cloud computing environment. Journal of Ambient Intelligence and Humanized Computing. 2020;p. 1–8. Available from: https://link.springer.com/article/10.1007/s12652-020-01728-2
  8. Vyas S, Gupta S, Bhargava D, Boddu R. Fuzzy Logic System Implementation on the Performance Parameters of Health Data Management Frameworks. Journal of Healthcare Engineering. 2022;2022:1–11. Available from: https://doi.org/10.1155/2022/9382322
  9. Daisy VR, Monisha S, Nandhini R. Identification of Fault in Three Phase Induction Motor using ANFIS. 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication (ICRAECC). 2019;p. 1–4. Available from: https://doi.org/10.1109/ICRAECC43874.2019.8995158
  10. Ahmadianfar I, Shirvani-Hosseini S, He J, Samadi-Koucheksaraee A, Yaseen ZM. An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Scientific Reports. 2022;12(1):4934. Available from: https://doi.org/10.1038/s41598-022-08875-w
  11. Imantoko A, Hermawan D, Avianto. Comparative Analysis Of Support Vector Machine And K-Nearest Neighbors with Pyramidal Histogram of Gradient For Sign Language Detection. Matrix: Jurnal Manajemen Teknologi dan Informatika. 2021;11:109–120. Available from: https://dx.doi.org/10.31940/matrix.v11i2


© 2023 Chandrasekhar & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.